生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 24236. DOI: 10.17520/biods.2024236 cstr: 32101.14.biods.2024236
谢淦1,2,#, 宣晶1,2,#, 付其迪1,#, 魏泽1, 薛凯1, 雒海瑞1, 高吉喜3,*(), 李敏1,2,*(
)
收稿日期:
2024-06-14
接受日期:
2024-10-15
出版日期:
2025-04-20
发布日期:
2025-01-03
通讯作者:
*E-mail: gjx@nies.org;
iplant@ibcas.ac.cn
作者简介:
#共同第一作者
基金资助:
Xie Gan1,2,#, Xuan Jing1,2,#, Fu Qidi1,#, Wei Ze1, Xue Kai1, Luo Hairui1, Gao Jixi3,*(), Li Min1,2,*(
)
Received:
2024-06-14
Accepted:
2024-10-15
Online:
2025-04-20
Published:
2025-01-03
Contact:
*E-mail: gjx@nies.org;
iplant@ibcas.ac.cn
About author:
#Co-first authors
Supported by:
摘要:
受全球气候变化和人类活动的影响, 植物生存环境、生存状态甚至整个植被生态系统都处于动态变化之中。对植物进行野外定点调查和监测, 是科学界和相关管理部门了解和评估区域植物生存状态、推测其发展态势, 进而制定相关保护方案等的基础。然而, 传统的植物野外调查依赖于植物鉴定专家, 这意味着极大的人力、物力和财力投入, 并且往往难以找到合适的专家。智能识别已被证明能够实现植物的种级精准鉴定, 并有极大的潜力能提高效率并减少工作量。本研究以欧亚草原东段的内蒙古草原为例, 通过在呼伦贝尔进行预实验, 发现以无人机垂直向下90°拍摄的图像用于构建模型可发现的物种数最多。基于在呼伦贝尔、锡林浩特、鄂尔多斯三地采集的无人机植物图像, 利用SSD-MobileNetV2-FPN架构训练无人机植物目标检测模型, 对采集图像进行了植物目标检测和提取, 利用MobileNetV3架构进行了识图训练, 最终搭建了可识别22科54属70种常见草地植物的无人机图像智能识别模型。利用预留的70种10,734幅图像进行评测, 该识别模型正确识别了其中的9,513幅, Top1识别准确率达到88.6%。该模型和无人机图像采集结合, 可在80 min内完成约300个1 m × 1 m样方的调查, 极大提升了植物野外调查的效率。本研究为草地植物多样性和生态系统的智能化调查和长期定点监测提供了一个新工具, 并为其他地区和植被类型中开展类似的工作提供了可参考的技术方案。
谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏 (2025) 草地植物多样性无人机调查的物种智能识别模型构建. 生物多样性, 33, 24236. DOI: 10.17520/biods.2024236.
Xie Gan, Xuan Jing, Fu Qidi, Wei Ze, Xue Kai, Luo Hairui, Gao Jixi, Li Min (2025) Establishing an intelligent identification model for unmanned aerial vehicle surveys of grassland plant diversity. Biodiversity Science, 33, 24236. DOI: 10.17520/biods.2024236.
图4 用于构建识别模型的无人机植物图像数据集(左: 物种数据集; 右: 物种图像示例)
Fig. 4 Image dataset for establishing identification models (Left, Dataset of species; Right, Images of species)
图6 草地植物多样性无人机调查的物种智能识别系统网站平台(http://www.iplant.cn/tc)
Fig. 6 Platform of Intelligent Species Identification System Website for investigation of grassland plant diversity by unmanned aerial vehicle (UAV) (http://www.iplant.cn/tc)
[1] | Cao JJ, Leng WC, Liu K, Liu L, He Z, Zhu YH (2018) Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 10, 89. |
[2] | Chiu YC, Tsai CY, Ruan MD, Shen GY, Lee TT (2020) Mobilenet-SSDv2:An improved object detection model for embedded systems. In: 2020 International Conference on System Science and Engineering, pp. 1-5. Kagawa, Japan. |
[3] | Du C, Liu J, Liu S, Ma JS (2022) A current and historical situation report of Chinese plant taxonomists. Biodiversity Science, 30, 22355. (in Chinese with English abstract) |
[杜诚, 刘军, 刘夙, 马金双 (2022) 中国植物分类学者的历史与现状. 生物多样性, 30, 22355.] | |
[4] | Emin M, Anwar E, Liu SH, Emin B, Mamut M, Abdukeram A, Liu T (2021) Target detection-based tree recognition in a spruce forest area with a high tree density—Implications for estimating tree numbers. Sustainability, 13, 3279. |
[5] | Hong QQ, Zhong XY, Chen WT, Zhang ZH, Li B (2023) Hyperspectral image classification network based on 3D octave convolution and multiscale depthwise separable convolution. ISPRS International Journal of Geo-Information, 12, 505. |
[6] | Husson E, Hagner O, Ecke F (2014) Unmanned aircraft systems help to map aquatic vegetation. Applied Vegetation Science, 17, 567-577. |
[7] | LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature, 521, 436-444. |
[8] | Leduc MB, Knudby AJ (2018) Mapping wild leek through the forest canopy using a UAV. Remote Sensing, 10, 70. |
[9] | Li AL, Dai ZG, Chen JQ, Deng CH, Tang Q, Cheng CH, Xu Y, Zhang XY, Su JG, Yang ZM (2023) Progresses of machine learning application in plant phenotype research. Plant Fiber Sciences in China, 45(5), 248-253, 260. (in Chinese with English abstract) |
[李阿蕾, 戴志刚, 陈基权, 邓灿辉, 唐蜻, 程超华, 许英, 张小雨, 粟建光, 杨泽茂 (2023) 机器学习在植物表型中的应用进展. 中国麻业科学, 45(5), 248-253, 260.] | |
[10] | Lin TY, Dollár P, Girshick R, He KM, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-2125. Honolulu, HI, USA. |
[11] | Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD:Single shot multibox detector. In:Computer Vision—ECCV 2016: 14th European Conference, pp. 21-37. Amsterdam, The Netherlands. |
[12] | Liu ZL, Wang J, Tian Y, Dai SL (2019) Deep learning for image-based large-flowered Chrysanthemum cultivar recognition. Plant Methods, 15, 146. |
[13] | Lü LY, Zhao Y, Yu GQ (2016) History, current situation and trends of the investigation for grassland plant resources at home and abroad. Heilongjiang Animal Science and Veterinary Medicine, (19), 140-143, 150. (in Chinese with English abstract) |
[吕林有, 赵艳, 于国庆 (2023) 国内外草地植物资源调查历史现状与趋势. 黑龙江畜牧兽医, (19), 140-143, 150.] | |
[14] | Peng Y, Tao ZY, Xu ZY, Bai L (2020) Detection of plant species beta-diversity in Hunshandak Sandy grasslands using hyperspectral data. Spectroscopy and Spectral Analysis, 40, 2016-2022. (in Chinese with English abstract) |
[彭羽, 陶子叶, 许子妍, 白岚 (2020) 应用高光谱数据估算植物物种beta多样性. 光谱学与光谱分析, 40, 2016-2022.] | |
[15] | Shang SB, Fan L, Liu N, Zhang FQ (2024) Flora of seed plants in Qinghai Area of the Kunlun Mountain National Park. Acta Botanica Boreali-Occidentalia Sinica, 44, 491-501. (in Chinese with English abstract) |
[尚帅斌, 范琳, 刘楠, 张发起 (2024) 昆仑山国家公园青海片区评估区种子植物区系研究. 西北植物学报, 44, 491-501.] | |
[16] | Sun Y, Liu Y, Wang G, Zhang HY (2017) Deep learning for plant identification in natural environment. Computational Intelligence and Neuroscience, 2017, 7361042. |
[17] | Sun Y, Yuan YX, Luo YF, Ji WX, Bian QY, Zhu ZQ, Wang JR, Qin Y, He XZ, Li M, Yi SH (2022) An improved method for monitoring multiscale plant species diversity of alpine grassland using UAV: A case study in the source region of the Yellow River, China. Frontiers in Plant Science, 13, 905715. |
[18] | Sun ZY, Wang XN, Wang ZH, Yang L, Xie YC, Huang YH (2021) UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. Journal of Plant Ecology, 14, 1003-1023. |
[19] | Szegedy C, Loffe S, Vanhoucke V, Alemi A (2016a) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI’17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (eds Singh S, Markovitch S), pp. 4278-4284. AAAI Press, San Francisco, USA. |
[20] | Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016b) Rethinking the inception architecture for computer vision. In: Conference on Computer Vision and Pattern Recognition, pp. 2818-2826. Las Vegas, NV, USA. |
[21] | Wan FM, Wan HW, Zhang ZR, Gao JX, Sun CX, Wang YC (2024) The application potential of unmanned aerial vehicle surveys in grassland plant diversity. Biodiversity Science, 32, 23381. (in Chinese with English abstract) |
[万凤鸣, 万华伟, 张志如, 高吉喜, 孙晨曦, 王永财 (2024) 草地植物多样性无人机调查的应用潜力. 生物多样性, 32, 23381.] | |
[22] | Wang HM, Liu H, Sang J, Li XY, Su M (2020) Spatial-temporal characteristics of vegetation cover and the correlation with climate in Hulunbuir. Journal of Inner Mongolia University (Natural Science Edition), 51, 539-547. (in Chinese with English abstract) |
[王海梅, 刘昊, 桑婧, 李鑫杨, 苏明 (2020) 呼伦贝尔植被覆盖时空变化特征及其与气候的相关性分析. 内蒙古大学学报(自然科学版), 51, 539-547.] | |
[23] | Wang YP, Cao SS, Li QS, Sun W (2023) Lightweight classification and recognition method of natural grassland plant image under complex background based on structure reparameterization. Journal of West China Forestry Science, 52(4), 144-153. (in Chinese with English abstract) |
[王亚鹏, 曹姗姗, 李全胜, 孙伟 (2023) 基于结构重参数化的复杂背景下天然草地植物图像轻量级分类识别方法. 西部林业科学, 52(4), 144-153.] | |
[24] | Xie G, Xuan J, Liu B, Luo YB, Wang YF, Zou XH, Li M (2024) FlowerMate 2.0: Identifying plants in China with artificial intelligence. The Innovation, 5, 100636. |
[25] | Xu ZH, Liu SY, Zhao Y, Tu WQ, Chang ZF, Zhang ET, Guo J, Zheng D, Geng J, Gu GY, Guo CP, Guo LL, Wang J, Xu CY, Peng C, Yang T, Cui MQ, Sun WC, Zhang JT, Liu HT, Ba CQ, Wang HQ, Jia JC, Wu JZ, Xiao C, Ma KP (2020) Evaluation of the identification ability of eight commonly used plant identification application softwares in China. Biodiversity Science, 28, 524-533. (in Chinese with English abstract) |
[许展慧, 刘诗尧, 赵莹, 涂文琴, 常诏峰, 张恩涛, 郭靖, 郑迪, 耿鋆, 顾高营, 郭淳鹏, 郭璐璐, 王静, 徐春阳, 彭钏, 杨腾, 崔梦琪, 孙伟成, 张剑坛, 刘皓天, 巴超群, 王鹤琪, 贾竞超, 武金洲, 肖翠, 马克平 (2020) 国内8款常用植物识别软件的识别能力评价. 生物多样性, 28, 524-533.] | |
[26] | Zhang LX, Yue X, Zhou DC, Fan JW, Li YZ (2023) Impacts of climate change and human activities on vegetation restoration in typical grasslands of China. Environmental Science, 44, 2694-2703. (in Chinese with English abstract) |
[张良侠, 岳笑, 周德成, 樊江文, 李愈哲 (2023) 气候变化和人类活动对我国典型草原区植被恢复的影响. 环境科学, 44, 2694-2703.] | |
[27] | Zhang XS (2007) Vegetation Map of the People’s Republic of China (1 : 1,000,000). Geology Press, Beijing. (in Chinese) |
[张新时 (2007) 中华人民共和国植被图(1 : 1,000,000). 地质出版社, 北京.] | |
[28] | Zhao P, Guo YX, Duan D, Liu WZ (2018) The application of plant identifications apps with mobile phone in botany teaching. Biology Teaching in University (Electronic Edition), 8(1), 47-51. (in Chinese with English abstract) |
[赵鹏, 郭垚鑫, 段栋, 刘文哲 (2018) 智能手机植物识别App在植物学教学中的应用. 高校生物学教学研究(电子版), 8(1), 47-51.] |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[10] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性-生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[11] | 袁敬毅, 张旭, 田镇朋, 王梓柘, 高永萍, 姚迪昭, 关宏灿, 李文楷, 刘婧, 张宏, 马勤. 结合无人机高分辨率可见光影像和激光雷达点云的城市植物群落树种组成和数量特征提取方法对比[J]. 生物多样性, 2025, 33(4): 24237-. |
[12] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[13] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[14] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[15] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn