生物多样性 ›› 2025, Vol. 33 ›› Issue (3): 24527. DOI: 10.17520/biods.2024527 cstr: 32101.14.biods.2024527
• 昆蒙框架如何在中国体制下成为主流工作目标专题 • 上一篇 下一篇
郭旋1,2(), 何思源1,*(
)(
), 闵庆文1,2,3(
)
收稿日期:
2024-12-01
接受日期:
2025-03-02
出版日期:
2025-03-20
发布日期:
2025-03-04
通讯作者:
*E-mail: hesy@igsnrr.ac.cn
基金资助:
Guo Xuan1,2(), He Siyuan1,*(
)(
), Min Qingwen1,2,3(
)
Received:
2024-12-01
Accepted:
2025-03-02
Online:
2025-03-20
Published:
2025-03-04
Contact:
*E-mail: hesy@igsnrr.ac.cn
Supported by:
摘要:
生物多样性是支撑人类可持续发展和生态系统稳定的重要基础。《生物多样性公约》缔约方大会多次提出保护和可持续利用全球生物多样性的目标和路径。尽管全球采取了诸多行动, 生物多样性丧失的趋势依然未得到有效遏制。随着《昆明-蒙特利尔全球生物多样性框架》关键目标“3030”全球目标到期时间临近, 结合中国国情推动《昆明-蒙特利尔全球生物多样性框架》主流化, 尤其是主流经济产业部门(如农业部门)向可持续转型且发挥其履约作用, 对于推动实现2050年“人与自然和谐共生”的愿景十分必要。重要农业文化遗产作为制度化保护的传统农业系统, 在生物多样性保护、生态产品开发和区域发展协同中具有独特优势, 契合《昆明-蒙特利尔全球生物多样性框架》中关于减少生物多样性威胁、通过可持续利用和惠益分享满足人类需求以及推动主流化工具和解决方案的目标, 有潜力推动中国特色的主流化履约模式。本文具体阐释重要农业文化遗产的生物多样性保护贡献及其制度化保护方式, 基于其系统性保护与适应性管理理念, 提出面向传统农业系统的生物多样性保护具体任务与评价指标, 包括物种丰富度、生物多样性相关地域、传统知识的贡献与传承、农业生产的环境质量与生态条件、生态农产品推广效率以及政策执行与落实效果等方面。
郭旋, 何思源, 闵庆文 (2025) 农业部门履行《生物多样性公约》的思路与途径——来自重要农业文化遗产管理的启示. 生物多样性, 33, 24527. DOI: 10.17520/biods.2024527.
Guo Xuan, He Siyuan, Min Qingwen (2025) Ideas and ways for agricultural sectors to implement the Convention on Biological Diversity: Insights from the management of Important Agricultural Heritage Systems. Biodiversity Science, 33, 24527. DOI: 10.17520/biods.2024527.
一级指标 Primary indicator | 二级指标 Secondary indicator | 含义 Explanation |
---|---|---|
物种丰富度与红色名录 Species richness and Red List | 物种丰富度 Species richness | 农业生产空间中不同物种(尤其是本地物种和关键物种)的丰富度及分布均匀度 Richness and distribution evenness of species (particularly native and keystone species) in agricultural production spaces |
受威胁物种及其分布情况 Threatened species and distribution status | 受威胁物种的种群变化及栖息地分布范围, 并建立红色名录 Population changes and habitat distribution ranges of threatened species, with establishment of Red List | |
生物多样性相关地域 Biodiversity-relevant areas | 生物多样性相关区域的面积和范围 Area and coverage of biodiversity-relevant zones | 受威胁物种生境、代表性自然生态系统范围、生物多样性关键地区和热点地区、关键生态系统服务功能提供区、生态连接地区的分布范围和面积 Distribution ranges and areas of threatened species habitats, representative natural ecosystems, key biodiversity areas and hotspots, key ecosystem service provision zones, and ecological connectivity areas |
多样化景观的连通性 Connectivity of diversified landscapes | 传统农业系统中多样化景观(如农田、林地、湿地等)的协调度及其连通性 Coordination degree and connectivity of diversified landscapes (e.g. farmland, forest, wetlands) in traditional agricultural systems | |
传统知识丰富度与传承 Traditional knowledge (TK) richness and transmission | 传统知识丰富度 TK richness | 农业生产实践、资源管理方法和生态文化价值观等传统知识的丰富度Richness of traditional knowledge systems in agricultural production practices, resource management methods and eco-cultural values |
传统知识传承度 TK transmission | 传统知识是否有记录存档、法律规章保障、纳入宣教体系、代际传承等 Documentation status and safeguarding measures for traditional knowledge, including archiving in recognized repositories, legal and regulatory protection, integration into education and awareness systems, and intergenerational transmission mechanism | |
环境质量与生态条件 Environmental quality and ecological condition | 水资源条件 Water resource conditions | 农业生产系统中的灌溉水质、灌溉水量、水资源利用效率、节水灌溉使用程度、地下水水质 Irrigation water quality, irrigation water quantity, water use efficiency, water-saving irrigation adoption rate, and groundwater quality in agricultural production systems |
土壤资源条件 Soil resource status | 农业生产系统中的土壤侵蚀度、土壤养分、土壤生物种群及活性 Soil erosion degree, soil nutrients, soil organism populations and activity in agricultural production systems | |
碳排放情况 Carbon emission profile | 农业生产过程中的二氧化碳及甲烷等温室气体排放量 Emissions of greenhouse gases, such as carbon dioxide and methane, from agricultural production processes* | |
生态农产品与推广效率 Eco-agricultural products and extension efficiency | 生态农产品价值转化效率 Eco-agricultural products value-added efficiency | 生态农产品成本(包括物质成本和人力成本)及价格变化情况, 生态农产品收入占农民收入的比例 Costs (including material and labour costs) and price fluctuation of eco-agricultural products, and the proportion of income from eco-agricultural products in farmers’ income |
生态农业模式推广采用率 Adoption rate of agroecological models | 农业生产中生态农业模式的应用比例, 资源循环利用效率, 采用传统生态友好农业实践的区域面积 Adoption rate of eco-agricultural models in agricultural production, resource recycling efficiency, and area using traditional eco-friendly agricultural practices | |
政策执行与落实效果 Policy implementation and enforcement effectiveness | 政策落实程度 Policy implementation level | 支持生物多样性保护的生产规范、管理标准、评估程序、传统知识记录与存档等政策框架的落实程度 Implementation level of policy frameworks supporting biodiversity conservation, including production standards, management criteria, assessment procedures, and traditional knowledge documentation and archiving |
资金激励实施效果 Financial incentive effectiveness | 生态农业补贴的发放额度及其覆盖农民比例, 传统绿色生产行为转型程度 Amount of eco-agriculture subsidies and coverage ratio of farmers, and transition degree of traditional green production behaviors | |
保护目标完成度 Conservation targets achievement | 特定物种或受威胁物种的种群恢复程度, 栖息地恢复目标完成度, 生态系统多样性增加程度 Population recovery degree of specific or threatened species, habitat restoration target completion rate, and ecosystem diversity increase rate | |
社区参与程度 Community participation level | 农民对生物多样性保护政策的认知程度及其参与生物多样性保护的程度 Farmers’ awareness level of biodiversity conservation policies and their participation degree in biodiversity conservation | |
长期监测体系运行情况 Long-term monitoring system performance | 生物多样性动态监测、土地利用变化监测体系运行情况, 包括是否定期收集、分析和报告相关数据 Operational status of biodiversity dynamics monitoring and land-use change monitoring, including whether relevant data are regularly collected, analysed and reported |
表1 农业部门履行《生物多样性公约》的指标体系
Table 1 The indicator system for the agricultural sector in fulfilling the Convention of Biological Diversity
一级指标 Primary indicator | 二级指标 Secondary indicator | 含义 Explanation |
---|---|---|
物种丰富度与红色名录 Species richness and Red List | 物种丰富度 Species richness | 农业生产空间中不同物种(尤其是本地物种和关键物种)的丰富度及分布均匀度 Richness and distribution evenness of species (particularly native and keystone species) in agricultural production spaces |
受威胁物种及其分布情况 Threatened species and distribution status | 受威胁物种的种群变化及栖息地分布范围, 并建立红色名录 Population changes and habitat distribution ranges of threatened species, with establishment of Red List | |
生物多样性相关地域 Biodiversity-relevant areas | 生物多样性相关区域的面积和范围 Area and coverage of biodiversity-relevant zones | 受威胁物种生境、代表性自然生态系统范围、生物多样性关键地区和热点地区、关键生态系统服务功能提供区、生态连接地区的分布范围和面积 Distribution ranges and areas of threatened species habitats, representative natural ecosystems, key biodiversity areas and hotspots, key ecosystem service provision zones, and ecological connectivity areas |
多样化景观的连通性 Connectivity of diversified landscapes | 传统农业系统中多样化景观(如农田、林地、湿地等)的协调度及其连通性 Coordination degree and connectivity of diversified landscapes (e.g. farmland, forest, wetlands) in traditional agricultural systems | |
传统知识丰富度与传承 Traditional knowledge (TK) richness and transmission | 传统知识丰富度 TK richness | 农业生产实践、资源管理方法和生态文化价值观等传统知识的丰富度Richness of traditional knowledge systems in agricultural production practices, resource management methods and eco-cultural values |
传统知识传承度 TK transmission | 传统知识是否有记录存档、法律规章保障、纳入宣教体系、代际传承等 Documentation status and safeguarding measures for traditional knowledge, including archiving in recognized repositories, legal and regulatory protection, integration into education and awareness systems, and intergenerational transmission mechanism | |
环境质量与生态条件 Environmental quality and ecological condition | 水资源条件 Water resource conditions | 农业生产系统中的灌溉水质、灌溉水量、水资源利用效率、节水灌溉使用程度、地下水水质 Irrigation water quality, irrigation water quantity, water use efficiency, water-saving irrigation adoption rate, and groundwater quality in agricultural production systems |
土壤资源条件 Soil resource status | 农业生产系统中的土壤侵蚀度、土壤养分、土壤生物种群及活性 Soil erosion degree, soil nutrients, soil organism populations and activity in agricultural production systems | |
碳排放情况 Carbon emission profile | 农业生产过程中的二氧化碳及甲烷等温室气体排放量 Emissions of greenhouse gases, such as carbon dioxide and methane, from agricultural production processes* | |
生态农产品与推广效率 Eco-agricultural products and extension efficiency | 生态农产品价值转化效率 Eco-agricultural products value-added efficiency | 生态农产品成本(包括物质成本和人力成本)及价格变化情况, 生态农产品收入占农民收入的比例 Costs (including material and labour costs) and price fluctuation of eco-agricultural products, and the proportion of income from eco-agricultural products in farmers’ income |
生态农业模式推广采用率 Adoption rate of agroecological models | 农业生产中生态农业模式的应用比例, 资源循环利用效率, 采用传统生态友好农业实践的区域面积 Adoption rate of eco-agricultural models in agricultural production, resource recycling efficiency, and area using traditional eco-friendly agricultural practices | |
政策执行与落实效果 Policy implementation and enforcement effectiveness | 政策落实程度 Policy implementation level | 支持生物多样性保护的生产规范、管理标准、评估程序、传统知识记录与存档等政策框架的落实程度 Implementation level of policy frameworks supporting biodiversity conservation, including production standards, management criteria, assessment procedures, and traditional knowledge documentation and archiving |
资金激励实施效果 Financial incentive effectiveness | 生态农业补贴的发放额度及其覆盖农民比例, 传统绿色生产行为转型程度 Amount of eco-agriculture subsidies and coverage ratio of farmers, and transition degree of traditional green production behaviors | |
保护目标完成度 Conservation targets achievement | 特定物种或受威胁物种的种群恢复程度, 栖息地恢复目标完成度, 生态系统多样性增加程度 Population recovery degree of specific or threatened species, habitat restoration target completion rate, and ecosystem diversity increase rate | |
社区参与程度 Community participation level | 农民对生物多样性保护政策的认知程度及其参与生物多样性保护的程度 Farmers’ awareness level of biodiversity conservation policies and their participation degree in biodiversity conservation | |
长期监测体系运行情况 Long-term monitoring system performance | 生物多样性动态监测、土地利用变化监测体系运行情况, 包括是否定期收集、分析和报告相关数据 Operational status of biodiversity dynamics monitoring and land-use change monitoring, including whether relevant data are regularly collected, analysed and reported |
[1] | Ai HS, Zhou H(2003) Deity mountain forest and its function in natural reservation in Gaoligong Mountain of Yunnan Province. Chinese Journal of Ecology, 2(2), 92-96. (in Chinese with English abstract) |
[ 艾怀森, 周鸿 (2003) 云南高黎贡山神山森林及其在自然保护中的作用. 生态学杂志, 2(2), 92-96.] | |
[2] | Dardonville M, Bockstaller C, Villerd J, Therond O(2022) Resilience of agricultural systems: Biodiversity-based systems are stable, while intensified ones are resistant and high-yielding. Agricultural Systems, 197, 103365. |
[3] | Ding LB(2021) Study of Cultural Keystone Species and Their Protection in Agricultural Heritage Sites—The Case Study in Honghe County, Yunnan and Aruhorqin, Inner Mongolia. PhD dissertation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[ 丁陆彬 (2021) 农业文化遗产地文化关键种及其保护研究——以云南省红河县和内蒙古自治区阿鲁科尔沁旗为例. 博士学位论文, 中国科学院地理科学与资源研究所, 北京.] | |
[4] | FAO (Food and Agriculture Organization of the United Nations) (2007) The State of the World’s Animal Genetic Resources for Food and Agriculture. FAO, Rome. (accessed on 2024-11-20) https://www.fao.org/3/a1250e/a1250e00.htm. |
[5] |
Gu XG, Min QW, Wang Y, Wang B(2022) Conservation and development of agricultural heritage systems in Zhejiang Province, China: Progress, problems and countermeasures. Acta Agriculturae Zhejiangensis, 34, 397-408. (in Chinese with English abstract)
DOI |
[ 顾兴国, 闵庆文, 王英, 王斌 (2022) 浙江省农业文化遗产保护进展、问题与对策. 浙江农业学报, 34, 397-408.]
DOI |
|
[6] |
He XQ, Batáry P, Zou Y, Zhou WW, Wang GH, Liu ZY, Bai YY, Gong SX, Zhu ZR, Settele J, Zhang ZX, Qi ZJ, Peng ZP, Ma MY, Lv J, Cen HY, Wanger TC(2023) Agricultural diversification promotes sustainable and resilient global rice production. Nature Food, 4, 788-796.
DOI PMID |
[7] |
Huang J, Long CL(2006) Traditional cultivation of Coptis teeta and its values in biodiversity conservation. Biodiversity Science, 14, 79-86. (in Chinese with English abstract)
DOI |
[ 黄骥, 龙春林 (2006) 云南黄连的传统种植及其在生物多样性保护中的价值. 生物多样性, 14, 79-86.]
DOI |
|
[8] | IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn, Germany. https://doi.org/10.5281/zenodo.3831673. (accessed on 2024-11-20) |
[9] |
Jiao WJ, Cui WC, Min QW, Zhang YX(2021) A review of research on agricultural heritage systems and their conservation. Resources Science, 43, 823-837. (in Chinese with English abstract)
DOI |
[ 焦雯珺, 崔文超, 闵庆文, 张永勋 (2021) 农业文化遗产及其保护研究综述. 资源科学, 43, 823-837.]
DOI |
|
[10] |
Jiao WJ, Wang BJ, Sun YH, Liu MC(2021) Design and application of the annual report of Globally Important Agricultural Heritage Systems (GIAHS) monitoring. Journal of Resources and Ecology, 12, 498-512.
DOI |
[11] | Li L, Hu RC, Huang JK, Bürgi M, Zhu ZY, Zhong J, Lu Z(2020) A farmland biodiversity strategy is needed for China. Nature Ecology & Evolution, 4, 772-774. |
[12] | Liu YH, Duan MC, Yu ZR(2013) Agricultural landscapes and biodiversity in China. Agriculture Ecosystems & Environment, 166, 46-54. |
[13] | Lu Y, Wang SM(2016) Introduction and reconstruction: Experience and enlightenment from the Janpanese GIAHS “Sado Island Ibis-Paddy Symbiotic System”. Journal of Yunnan Normal University (Humanities and Social Sciences Edition), 48(2), 132-138. (in Chinese with English abstract) |
[ 卢勇, 王思明 (2016) 引进与重构: 全球农业文化遗产“日本佐渡岛朱鹮——稻田共生系统”的经验与启示. 云南师范大学学报(哲学社会科学版), 48(2), 132-138.] | |
[14] | Meng ZQ, Dong JW, Ellis EC, Metternicht G, Qin YW, Song XP, Löfqvist S, Garrett RD, Jia XP, Xiao XM(2023) Post- 2020 biodiversity framework challenged by cropland expansion in protected areas. Nature Sustainability, 6, 758-768. |
[15] | Min QW, Luo SM, Cao XS, Yuan L, Cheng SK, Yang QW, Sun QZ, Li XD, Sun YH, Zhao LJ, Zhang HZ, Wu MF(2022) Agri-cultural heritage: A bridge between past and the future. Journal of Agricultural Resources and Environment, 39, 856-868. (in Chinese with English abstract) |
[ 闵庆文, 骆世明, 曹幸穗, 苑利, 成升魁, 杨庆文, 孙庆忠, 李先德, 孙业红, 赵立军, 张红榛, 吴敏芳 (2022) 农业文化遗产: 连接过去与未来的桥梁. 农业资源与环境学报, 39, 856-868.] | |
[16] | Qi DH, Guo HJ, Cui JY, Sheng CY(2005) Plant biodiversity assessment of the ancient tea garden ecosystem in Jingmai of Lancang, Yunnan. Biodiversity Science, 13, 221-231. (in Chinese with English abstract) |
[ 齐丹卉, 郭辉军, 崔景云, 盛才余 (2005) 云南澜沧县景迈古茶园生态系统植物多样性评价. 生物多样性, 13, 221-231.]
DOI |
|
[17] | Rakotomalala AANA, Ficiciyan AM, Tscharntke T(2023) Intercropping enhances beneficial arthropods and controls pests: A systematic review and meta-analysis. Agriculture, Ecosystems & Environment, 356, 108617. |
[18] |
Rasmussen LV, Grass I, Mehrabi Z, Smith OM, Bezner-Kerr R, Blesh J, Garibaldi LA, Isaac ME, Kennedy CM, Wittman H, Batáry P, Buchori D, Cerda R, Chará J, Crowder DW, Darras K, DeMaster K, Garcia K, Gómez M, Gonthier D, Hidayat P, Hipólito J, Hirons M, Hoey L, James D, John I, Jones AD, Karp DS, Kebede Y, Kerr CB, Klassen S, Kotowska M, Kreft H, Llanque R, Levers C, Lizcano DJ, Lu A, Madsen S, Marques RN, Martins PB, Melo A, Nyantakyi-Frimpong H, Olimpi EM, Owen JP, Pantevez H, Qaim M, Redlich S, Scherber C, Sciligo AR, Snapp S, Snyder WE, Steffan-Dewenter I, Stratton AE, Taylor JM, Tscharntke T, Valencia V, Vogel C, Kremen C(2024) Joint environmental and social benefits from diversified agriculture. Science, 384, 87-93.
DOI PMID |
[19] | Tang XP, Ouyang ZY, Jiang YF, Ma W, Xu WH, Chen S, Liu ZL(2023) Spatial planning of national parks in China. National Park, 1, 1-10. (in Chinese with English abstract) |
[ 唐小平, 欧阳志云, 蒋亚芳, 马炜, 徐卫华, 陈尚, 刘增力 (2023) 中国国家公园空间布局研究. 国家公园(中英文), 1, 1-10.] | |
[20] | Wang GP(2022) Farmers’ Adaptation Strategies to Climate Extremes in Nomadic Agricultural Cultural Heritage System. PhD dissertation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[ 王国萍 (2022) 游牧类农业文化遗产地农户对极端气候的适应策略研究. 博士学位论文, 中国科学院地理科学与资源研究所, 北京.] | |
[21] | Wang L, Wang L, Yang BH, Li J(2007) Preliminary study on Hani terraced-field water culture and its protection. China Rural Water and Hydropower, (8), 42-44. (in Chinese with English abstract) |
[ 王龙, 王琳, 杨保华, 李靖 (2007) 哈尼梯田水文化及其保护初步研究. 中国农村水利水电, (8), 42-44.] | |
[22] | Xu WH, Xiao Y, Zhang JJ, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu JG, Polasky S, Jiang L, Xiao Y, Shi XW, Rao EM, Lu F, Wang XK, Daily GC, Ouyang ZY(2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences, USA, 114, 1601-1606. |
[23] | Zeng JW, Zhang YZ, Wang C, Qing BP, Zhang YM, Ye YX, He J(2021) Foraging habitat selection of Nipponia nippon in farmlands in winter. Sichuan Journal of Zoology, 40, 525-531. (in Chinese with English abstract) |
[ 曾键文, 张亚祖, 王超, 庆保平, 张跃明, 叶元兴, 何健 (2021) 朱鹮对冬季农田的觅食选择. 四川动物, 40, 525-531.] | |
[24] | Zhang D, Cheng SK, Yang HL, He L, Jiao WJ, Liu S, Min QW(2011) Ecological control effects on pest, pathogen and weed of multiple species coexistence in paddy fields in traditional agricultural regions. Resources Science, 33, 1032-1037. (in Chinese with English abstract) |
[ 张丹, 成升魁, 杨海龙, 何露, 焦雯珺, 刘珊, 闵庆文 (2011) 传统农业区稻田多个物种共存对病虫草害的生态控制效应——以贵州省从江县为例. 资源科学, 33, 1032-1037.] | |
[25] | Zhang D, Min QW, He L, Yuan Z(2016) Agrobiodiversity features, conservation and utilization of China’s Globally Important Agricultural Heritage Systems. Chinese Journal of Eco-Agriculture, 24, 451-459. (in Chinese with English abstract) |
[ 张丹, 闵庆文, 何露, 袁正 (2016) 全球重要农业文化遗产地的农业生物多样性特征及其保护与利用. 中国生态农业学报, 24, 451-459.] | |
[26] | Zheng XM, Yang QW(2021) Progress of agricultural biodiversity conservation in China. Biodiversity Science, 29, 167-176. (in Chinese with English abstract) |
[ 郑晓明, 杨庆文 (2021) 中国农业生物多样性保护进展概述. 生物多样性, 29, 167-176.] | |
[27] | Zou L, Xie ZQ, Ou XK(2005) Significance of Tibetan sacred hills in nature conservation of Shangri-La Gorge, Yunnan. Biodiversity Science, 13, 51-57. (in Chinese with English abstract) |
[ 邹莉, 谢宗强, 欧晓昆 (2005) 云南省香格里拉大峡谷藏族神山在自然保护中的意义. 生物多样性, 13, 51-57.]
DOI |
[1] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[2] | 刘志禹 吉鑫 隋国辉 杨定 李轩昆. 北京首都国际机场野牛草与杂草草坪无脊椎动物多样性[J]. 生物多样性, 2025, 33(4): 24456-. |
[3] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[4] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[5] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[6] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
[7] | 武慧, 俞乐, 杜贞容, 赵强, 戚文超, 曹越, 王金洲, 申小莉, 孙尧, 马克平. 基于遥感监测的《昆蒙框架》执行进展快速评估: 路径与展望[J]. 生物多样性, 2025, 33(3): 24526-. |
[8] | 周志华, 金效华, 罗颖, 李迪强, 岳建兵, 刘芳, 何拓, 李希, 董晖, 罗鹏. 中国林草部门落实《昆明-蒙特利尔全球生物多样性框架》的机制、成效分析及建议[J]. 生物多样性, 2025, 33(3): 24487-. |
[9] | 苏红巧, 余得光, 牟昆仑. 国家公园与国土空间规划和用途管制制度衔接路径探讨[J]. 生物多样性, 2025, 33(3): 24570-. |
[10] | 刘立, 臧明月, 马月, 万雅琼, 胡飞龙, 卢晓强, 刘燕. 央地协同推动国家生物多样性战略和行动计划执行的措施、进展与展望[J]. 生物多样性, 2025, 33(3): 24532-. |
[11] | 王晓倩, 邓毅. 与《昆明-蒙特利尔全球生物多样性框架》衔接的中国OECMs关键问题与推进策略[J]. 生物多样性, 2025, 33(3): 24569-. |
[12] | 顾婧婧, 刘宜卓, 苏杨. 基层地方政府在完成《昆蒙框架》中的作用和难点: 基于《联合国气候变化框架公约》任务的比较[J]. 生物多样性, 2025, 33(3): 24585-. |
[13] | 田志奇, 苏杨. 环境相关国际公约的中国履约模式和在《生物多样性公约》中的应用: 从完成《昆蒙框架》目标和发挥国家公园作用的角度[J]. 生物多样性, 2025, 33(3): 24593-. |
[14] | 姜雪原, 徐嘉忆, 盛学敏, 朱源. 《中国生物多样性保护战略与行动计划(2023‒2030年)》与《昆蒙框架》的协同与差异[J]. 生物多样性, 2025, 33(3): 24575-. |
[15] | 黄金丽, 王茜璐, 王爱华. 地方政府执行《中国生物多样性保护战略与行动计划(2023‒2030年)》的难点及对策建议[J]. 生物多样性, 2025, 33(3): 24573-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn