生物多样性 ›› 2025, Vol. 33 ›› Issue (2): 24302. DOI: 10.17520/biods.2024302 cstr: 32101.14.biods.2024302
刘志祥1(), 谢华2(
), 张慧1,3(
), 黄晓磊1,*(
)(
)
收稿日期:
2024-07-08
接受日期:
2024-10-02
出版日期:
2025-02-20
发布日期:
2025-03-20
通讯作者:
*E-mail: huangxl@fafu.edu.cn
基金资助:
Liu Zhixiang1(), Xie Hua2(
), Zhang Hui1,3(
), Huang Xiaolei1,*(
)(
)
Received:
2024-07-08
Accepted:
2024-10-02
Online:
2025-02-20
Published:
2025-03-20
Contact:
*E-mail: huangxl@fafu.edu.cn
Supported by:
摘要:
表皮碳氢化合物(cuticular hydrocarbons, CHCs)是一类广泛分布于昆虫表皮的烃类混合物, 具有防水、抵抗有害物质入侵和化学通讯等功能, 为昆虫适应陆地的多种生活方式作出巨大贡献。相较于独(寡)居昆虫, 社会性昆虫CHCs的组成和功能多样性将有益于探究社会性昆虫所特有的遗传结构、群体组成和行为模式。因此, 本文对社会性昆虫CHCs的结构、性质及功能进行了总结, 并对影响其组成多样化的内源和外源因子进行了讨论, 同时对未来的研究方向进行了展望。社会性昆虫的CHCs能介导同巢个体识别、级型分化、社会分工、群体免疫、生殖状态识别及种间互作, 甚至部分CHCs已经进化为功能高度专一的蜂王(蚁后)信息素。社会性昆虫可能需要较高的CHCs组分多样性以适应其功能分化, 而多种内源(基因和激素水平)及外源因素(食物、肠道微生物、病原生物、温湿度、紫外辐射及巢穴材料等)均能影响CHCs的组成。未来, 借助定量遗传框架、免疫组化定位、荧光原位杂交等多种新兴技术, 对社会性昆虫及其他昆虫类群CHCs合成、转运、释放、功能多样性及其调控机制进行研究, 将有助于深入理解CHCs对昆虫适应性进化的重要贡献, 并为开发基于CHCs的重大入侵和农林害虫的防控新技术提供理论参考。
刘志祥, 谢华, 张慧, 黄晓磊 (2025) 表皮碳氢化合物在社会性昆虫中的功能多样性及其调控. 生物多样性, 33, 24302. DOI: 10.17520/biods.2024302.
Liu Zhixiang, Xie Hua, Zhang Hui, Huang Xiaolei (2025) Functional diversity and regulation of cuticular hydrocarbons in social insects. Biodiversity Science, 33, 24302. DOI: 10.17520/biods.2024302.
图2 表皮碳氢化合物(CHCs)在社会性昆虫中的化学通讯功能及其实现方式
Fig. 2 Chemical communication functions of cuticular hydrocarbons (CHCs) in social insects and mechanisms by which they are achieved
图3 昆虫表皮碳氢化合物(CHCs)合成过程中涉及到的重要基因及影响CHCs组分多样性的因素
Fig. 3 Key genes involved in the synthesis of insect cuticular hydrocarbons (CHCs) and factors influencing the diversity of CHCs components
[1] | Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proceedings of the Royal Society B: Biological Sciences, 266, 1419-1426. |
[2] | Bagnères AG, Lorenzi MC (2010). Chemical deception/mimicry using cuticular hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (eds Blomquist GJ, Bagneres AG), pp. 282-323. Cambridge University Press, Cambridge. |
[3] |
Balabanidou V, Grigoraki L, Vontas J (2018) Insect cuticle: A critical determinant of insecticide resistance. Current Opinion in Insect Science, 27, 68-74.
DOI PMID |
[4] | Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Patricia Juárez M, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Hemingway J, Ranson H, Lycett GJ, Vontas J (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proceedings of the National Academy of Sciences, USA, 113, 9268-9273. |
[5] |
Beros S, Foitzik S, Menzel F (2017) What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? Journal of Chemical Ecology, 43, 869-880.
DOI PMID |
[6] | Blomquist GJ, Bagnères A (2010) Insect Hydrocarbons:Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge. |
[7] |
Blomquist GJ, Ginzel MD (2021) Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annual Review of Entomology, 66, 45-60.
DOI PMID |
[8] | Boomsma JJ, Nielsen J, Sundström L, Oldham NJ, Tentschert J, Petersen HC, Morgan ED (2003) Informational constraints on optimal sex allocation in ants. Proceedings of the National Academy of Sciences, USA, 100, 8799-8804. |
[9] | Bos N, Grinsted L, Holman L (2011) Wax on, wax off: Nest soil facilitates indirect transfer of recognition cues between ant nestmates. PLoS ONE, 6, e19435. |
[10] | Butterwick JA, Del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, Ruta V (2018) Cryo-EM structure of the insect olfactory receptor Orco. Nature, 560, 447-452. |
[11] |
Calla B, MacLean M, Liao LH, Dhanjal I, Tittiger C, Blomquist GJ, Berenbaum MR (2018) Functional characterization of CYP4G11—A highly conserved enzyme in the western honey bee Apis mellifera. Insect Molecular Biology, 27, 661-674.
DOI PMID |
[12] | Cappa F, Bruschini C, Protti I, Turillazzi S, Cervo R (2016) Bee guards detect foreign foragers with cuticular chemical profiles altered by phoretic Varroa mites. Journal of Apicultural Research, 55, 268-277. |
[13] |
Chertemps T, Duportets L, Labeur C, Ueyama M, Wicker-Thomas C (2006) A female-specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Molecular Biology, 15, 465-473.
PMID |
[14] |
Chung H, Carroll SB (2015) Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays, 37, 822-830.
DOI PMID |
[15] | Crespi BJ (1992) Eusociality in Australian gall thrips. Nature, 359, 724-726. |
[16] | da Silva RC, Prato A, Tannure-Nascimento I, Oi CA, Wenseleers T, Nascimento F (2022) Cuticular hydrocarbons as caste-linked cues in Neotropical swarm-founding wasps. PeerJ, 10, e13571. |
[17] | Dallerac R, Labeur C, Jallon JM, Knipple DC, Roelofs WL, Wicker-Thomas C (2000) A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA, 97, 9449-9454. |
[18] | Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RRH, MacKay TFC (2015) Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife, 4, e09861. |
[19] | Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annual Review of Entomology, 39, 129-154. |
[20] |
Duarte BF, Michelutti KB, Antonialli-Junior WF, Cardoso CAL (2019) Effect of temperature on survival and cuticular composition of three different ant species. Journal of Thermal Biology, 80, 178-189.
DOI PMID |
[21] |
Fan YL, Schal C, Vargo EL, Bagnères AG (2004) Characterization of termite lipophorin and its involvement in hydrocarbon transport. Journal of Insect Physiology, 50, 609-620.
PMID |
[22] | Fluri P, Sabatini AG, Vecchi MA, Wille H (1981) Blood juvenile hormone, protein and vitellogenin titres in laying and non-laying queen honeybees. Journal of Apicultural Research, 20, 221-225. |
[23] | Frank ET, Kesner L, Liberti J, Helleu Q, LeBoeuf AC, Dascalu A, Sponsler DB, Azuma F, Economo EP, Waridel P, Engel P, Schmitt T, Keller L (2023) Targeted treatment of injured nestmates with antimicrobial compounds in an ant society. Nature Communications, 14, 8446. |
[24] |
Gellert HR, Halley DC, Sieb ZJ, Smith JC, Pask GM (2022) Microstructures at the distal tip of ant chemosensory sensilla. Scientific Reports, 12, 19328.
DOI PMID |
[25] | Gibbs AG (1998) Water-proofing properties of cuticular lipids. Integrative and Comparative Biology, 38, 471-482. |
[26] |
Gibbs AG, Chippindale AK, Rose MR (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology, 200, 1821-1832.
DOI PMID |
[27] | Gordon DM, Holmes S, Nacu S (2008) The short-term regulation of foraging in harvester ants. Behavioral Ecology, 19, 217-222. |
[28] | Greene MJ, Gordon DM (2003) Social insects: Cuticular hydrocarbons inform task decisions. Nature, 423, 32. |
[29] | Guerrieri FJ, Nehring V, Jørgensen CG, Nielsen J, Giovanni Galizia C, D’Ettorre P (2009) Ants recognize foes and not friends. Proceedings of the Royal Society B: Biological Sciences, 276, 2461-2468. |
[30] | Guo L, Quilici DR, Chase J, Blomquist GJ (1991) Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis. Insect Biochemistry, 21, 327-333. |
[31] |
Hartke J, Schell T, Jongepier E, Schmidt H, Sprenger PP, Paule J, Bornberg-Bauer E, Schmitt T, Menzel F, Pfenninger M, Feldmeyer B (2019) Hybrid genome assembly of a neotropical mutualistic ant. Genome Biology and Evolution, 11, 2306-2311.
DOI PMID |
[32] | Hatano E, Wada-Katsumata A, Schal C (2020) Environmental decomposition of olefinic cuticular hydrocarbons of Periplaneta americana generates a volatile pheromone that guides social behaviour. Proceedings of the Royal Society B: Biological Sciences, 287, 20192466. |
[33] | Holman L, Jørgensen CG, Nielsen J, d’Ettorre P (2010) Identification of an ant queen pheromone regulating worker sterility. Proceedings of the Royal Society B: Biological Sciences, 277, 3793-3800. |
[34] |
Holman L, Lanfear R, d’Ettorre P (2013) The evolution of queen pheromones in the ant genus Lasius. Journal of Evolutionary Biology, 26, 1549-1558.
DOI PMID |
[35] |
Holze H, Schrader L, Buellesbach J (2021) Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity, 126, 219-234.
DOI PMID |
[36] |
Honorio R, Châline N, Chameron S (2019) Pre-existing differences in putative fertility signals give workers the upper hand in ant reproductive hierarchies. Animal Behaviour, 157, 129-140.
DOI |
[37] |
Howard RW, McDaniel CA, Nelson DR, Blomquist GJ, Gelbaum LT, Zalkow LH (1982) Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species- and caste-recognition cues. Journal of Chemical Ecology, 8, 1227-1239.
DOI PMID |
[38] | Ingham CS, Engl T, Kaltenpoth M (2023a) Protection of a defensive symbiont does not constrain the composition of the multifunctional hydrocarbon profile in digger wasps. Biology Letters, 19, 20230301. |
[39] | Ingham CS, Engl T, Matarrita-Carranza B, Vogler P, Huettel B, Wielsch N, Svatoš A, Kaltenpoth M (2023b) Host hydrocarbons protect symbiont transmission from a radical host defense. Proceedings of the National Academy of Sciences, USA, 120, e2302721120. |
[40] | Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. Journal of Chemical Ecology, 37, 205-212. |
[41] | Kather R, Drijfhout FP, Martin SJ (2015) Evidence for colony-specific differences in chemical mimicry in the parasitic mite Varroa destructor. Chemoecology, 25, 215-222. |
[42] |
Kather R, Martin SJ (2015) Evolution of cuticular hydrocarbons in the Hymenoptera: A meta-analysis. Journal of Chemical Ecology, 41, 871-883.
DOI PMID |
[43] | Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J (2019) Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. Insect Biochemistry and Molecular Biology, 110, 52-59. |
[44] |
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM (2014) The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama. Frontiers in Zoology, 11, 78.
DOI PMID |
[45] | Kirkendall L (1997) Interactions among males, females and offspring in bark and ambrosia beetles:The significance of living in tunnels for the evolution of social behavior. In: The Evolution of Social Behavior in Insect and Arachnids (eds Choe JC, Crespi BJ), pp. 181-215. Cambridge University Press, Cambridge. |
[46] | Koto A, Motoyama N, Tahara H, McGregor S, Moriyama M, Okabe T, Miura M, Keller L (2019) Oxytocin/ vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants. Proceedings of the National Academy of Sciences, USA, 116, 5597-5606. |
[47] | Le Conte Y, Huang ZY, Roux M, Zeng ZJ, Christidès JP, Bagnères AG (2015) Varroa destructor changes its cuticular hydrocarbons to mimic new hosts. Biology Letters, 11, 20150233. |
[48] | LeBoeuf AC, Waridel P, Brent CS, Gonçalves AN, Menin L, Ortiz D, Riba-Grognuz O, Koto A, Soares ZG, Privman E, Miska EA, Benton R, Keller L (2016) Oral transfer of chemical cues, growth proteins and hormones in social insects. eLife, 5, e20375. |
[49] | León-Morán LO, Pastor-Belda M, Viñas P, Arroyo- Manzanares N, García MD, Arnaldos MI, Campillo N (2024) Discrimination of Diptera order insects based on their saturated cuticular hydrocarbon content using a new microextraction procedure and chromatographic analysis. Analytical Methods, 16, 2938-2947. |
[50] | Li DT, Chen X, Wang XQ, Moussian B, Zhang CX (2019) The fatty acid elongase gene family in the brown planthopper, Nilaparvata lugens, Insect Biochemistry and Molecular Biology, 108, 32-43. |
[51] | Liebig J (2010) Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology ( eds Blomquist GJ, Bagneres AG), pp. 254-281. Cambridge University Press, Cambridge. |
[52] | Lorenzi MC, Sledge MF, Laiolo P, Sturlini E, Turillazzi S (2004) Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. Journal of Insect Physiology, 50, 935-941. |
[53] |
Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35, 1151-1161.
DOI PMID |
[54] | McKenzie SK, Fetter-Pruneda I, Ruta V, Kronauer DJC (2016) Transcriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of odorant receptors in chemical communication. Proceedings of the National Academy of Sciences, USA, 113, 14091-14096. |
[55] | Menzel F, Morsbach S, Martens JH, Räder P, Hadjaje S, Poizat M, Abou B (2019) Communication versus waterproofing: The physics of insect cuticular hydrocarbons. Journal of Experimental Biology, 222, jeb210807. |
[56] | Menzel F, Zumbusch M, Feldmeyer B (2018) How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile. Functional Ecology, 32, 657-666. |
[57] |
Michelutti KB, Soares ERP, Sguarizi-Antonio D, Piva RC, Súarez YR, Cardoso CAL, Antonialli-Junior WF (2018) Influence of temperature on survival and cuticular chemical profile of social wasps. Journal of Thermal Biology, 71, 221-231.
DOI PMID |
[58] | Mothapo NP, Wossler TC (2016) “You are not always what you eat”: Diet did not override intrinsic nestmate recognition cues in Argentine ants from two supercolonies in South Africa. African Zoology, 51, 161-171. |
[59] | Murray ZL, Keyzers RA, Barbieri RF, Digby AP, Lester PJ (2016) Two pathogens change cuticular hydrocarbon profiles but neither elicit a social behavioural change in infected honey bees, Apis mellifera (Apidae: Hymenoptera). Austral Entomology, 55, 147-153. |
[60] |
Oi CA, van Zweden JS, Oliveira RC, van Oystaeyen A, Nascimento FS, Wenseleers T (2015) The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. BioEssays, 37, 808-821.
DOI PMID |
[61] |
Otte T, Hilker M, Geiselhardt S (2015) The effect of dietary fatty acids on the cuticular hydrocarbon phenotype of an herbivorous insect and consequences for mate recognition. Journal of Chemical Ecology, 41, 32-43.
DOI PMID |
[62] |
Otte T, Hilker M, Geiselhardt S (2018) Phenotypic plasticity of cuticular hydrocarbon profiles in insects. Journal of Chemical Ecology, 44, 235-247.
DOI PMID |
[63] |
Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science, 309, 311-314.
PMID |
[64] |
Pask GM, Slone JD, Millar JG, Das P, Moreira JA, Zhou XF, Bello J, Berger SL, Bonasio R, Desplan C, Reinberg D, Liebig J, Zwiebel LJ, Ray A (2017) Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nature Communications, 8, 297.
DOI PMID |
[65] | Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juárez MP (2009) Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Neglected Tropical Diseases, 3, e434. |
[66] | Prato A, da Silva RC, Assis DS, Mateus S, Hartfelder K, do Nascimento FS (2021) Juvenile hormone affects age polyethism, ovarian status and cuticular hydrocarbon profile in workers of the wasp Polybia occidentalis. Journal of Experimental Biology, 224, jeb240200. |
[67] | Pull CD, Ugelvig LV, Wiesenhofer F, Grasse AV, Tragust S, Schmitt T, Brown MJ, Cremer S (2018) Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife, 7, e32073. |
[68] |
Purcell J, Zahnd S, Athanasiades A, Türler R, Chapuisat M, Brelsford A (2016) Ants exhibit asymmetric hybridization in a mosaic hybrid zone. Molecular Ecology, 25, 4866-4874.
DOI PMID |
[69] | Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX (2024) The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. International Journal of Biological Macromolecules, 278, 134605. |
[70] | Rahman S, Hajong SR, Gévar J, Lenoir A, Darrouzet E (2016) Cuticular hydrocarbon compounds in worker castes and their role in nestmate recognition in Apis cerana indica. Journal of Chemical Ecology, 42, 444-451. |
[71] | Ramsay JA (1935) The evaporation of water from the cockroach. Journal of Experimental Biology, 12, 373-383. |
[72] |
Robinson GE, Vargo EL (1997) Juvenile hormone in adult eusocial Hymenoptera: Gonadotropin and behavioral pacemaker. Archives of Insect Biochemistry and Physiology, 35, 559-583.
PMID |
[73] | Saleh NW, Hodgson K, Pokorny T, Mullins A, Chouvenc T, Eltz T, Ramírez SR (2021) Social behavior, ovary size, and population of origin influence cuticular hydrocarbons in the orchid bee Euglossa dilemma. The American Naturalist, 198, E136-E151. |
[74] | Sano K, Bannon N, Greene MJ (2018) Pavement ant workers (Tetramorium caespitum) assess cues coded in cuticular hydrocarbons to recognize conspecific and heterospecific non-nestmate ants. Journal of Insect Behavior, 31, 186-199. |
[75] | Sevala VL, Bagnères AG, Kuenzli M, Blomquist GJ, Schal C (2000) Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: Caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. Journal of Chemical Ecology, 26, 765-789. |
[76] | Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Integrative and Comparative Biology, 38, 394-405. |
[77] | Singer TL, Espelie KE (1992) Social wasps use nest paper hydrocarbons for nestmate recognition. Animal Behaviour, 44, 63-68. |
[78] | Singer TL, Espelie KE (1996) Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera: Vespidae). Journal of Insect Behavior, 9, 857-870. |
[79] | Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL, Reinberg D, Liebig J, Ray A, Zwiebel LJ (2017) Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. Proceedings of the National Academy of Sciences, USA, 114, 8586-8591. |
[80] |
Smith AA, Hölldober B, Liebig J (2009) Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biology, 19, 78-81.
DOI PMID |
[81] |
Smith AA, Liebig J (2017) The evolution of cuticular fertility signals in eusocial insects. Current Opinion in Insect Science, 22, 79-84.
DOI PMID |
[82] | Sprenger PP, Burkert LH, Abou B, Federle W, Menzel F (2018) Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. Journal of Experimental Biology, 221, jeb171488. |
[83] | Sprenger PP, Gerbes LJ, Sahm J, Menzel F (2021a) Cuticular hydrocarbon profiles differ between ant body parts: Implications for communication and our understanding of CHC diffusion. Current Zoology, 67, 531-540. |
[84] | Sprenger PP, Hartke J, Schmitt T, Menzel F, Feldmeyer B (2021b) Candidate genes involved in cuticular hydrocarbon differentiation between cryptic, parabiotic ant species. G3: Genes, Genomes, Genetics, 11, jkab078. |
[85] |
Sprenger PP, Menzel F (2020) Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: How and why they differ among individuals, colonies, and species. Myrmecological News, 30, 1-26.
DOI |
[86] |
Stern DL, Foster WA (1996) The evolution of soldiers in aphids. Biological Reviews, 71, 27-79.
PMID |
[87] |
Teseo S, van Zweden JS, Pontieri L, Kooij PW, Sørensen SJ, Wenseleers T, Poulsen M, Boomsma JJ, Sapountzis P (2019) The scent of symbiosis: Gut bacteria may affect social interactions in leaf-cutting ants. Animal Behaviour, 150, 239-254.
DOI |
[88] |
Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang NC, Matthews BJ, Oxley PR, Kronauer DJC (2017) Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell, 170, 727-735.
DOI PMID |
[89] | Uebi T, Sakita T, Ikeda R, Sakanishi K, Tsutsumi T, Zhang ZJ, Ma HY, Matsubara R, Matsuyama S, Nakajima S, Huang RN, Habe S, Hefetz A, Ozaki M (2022) Chemical identification of an active component and putative neural mechanism for repellent effect of a native ant’s odor on invasive species. Frontiers in Physiology, 13, 844084. |
[90] | Uematsu K, Yang MM, Amos W, Foster WA (2023) Eusocial evolution without a nest: Kin structure of social aphids forming open colonies on bamboo. Behavioral Ecology and Sociobiology, 77, 38. |
[91] |
van Oystaeyen A, Oliveira RC, Holman L, van Zweden JS, Romero C, Oi CA, d’Ettorre P, Khalesi M, Billen J, Wäckers F, Millar JG, Wenseleers T (2014) Conserved class of queen pheromones stops social insect workers from reproducing. Science, 343, 287-290.
DOI PMID |
[92] | van Wilgenburg E, Mariotta M IV, Tsutsui ND (2022) The effect of diet on colony recognition and cuticular hydrocarbon profiles of the invasive Argentine ant, Linepithema humile, Insects, 13, 335. |
[93] | van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. . In: Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (eds Blomquist GJ, Bagneres AG), pp. 222-243. Cambridge University Press, Cambridge, |
[94] |
Vázquez M, Muñoz D, Medina R, Paxton RJ, de Oliveira FF, Quezada-Euán JJG (2022) Sympatric cleptobiotic stingless bees have species-specific cuticular profiles that resemble their hosts. Scientific Reports, 12, 2621.
DOI PMID |
[95] | Völkl W, Mackauer M (1993) Interactions between ants attending Aphis fabae ssp. cirsiiacanthoidis on thistles and foraging parasitoid wasps. Journal of Insect Behavior, 6, 301-312. |
[96] | von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC (2018) Chemical and behavioral integration of army ant-associated rove beetles—A comparison between specialists and generalists. Frontiers in Zoology, 15, 8. |
[97] | Vonshak M, Dayan T, Foucaud J, Estoup A, Hefetz A (2009) The interplay between genetic and environmental effects on colony insularity in the clonal invasive little fire ant Wasmannia auropunctata. Behavioral Ecology and Sociobiology, 63, 1667-1677. |
[98] |
Wagner D, Tissot M, Gordon D (2001) Task-related environment alters the cuticular hydrocarbon composition of harvester ants. Journal of Chemical Ecology, 27, 1805-1819.
PMID |
[99] | Wang QK, Goodger JQD, Woodrow IE, Chang L, Elgar MA (2019) Task-specific recognition signals are located on the legs in a social insect. Frontiers in Ecology and Evolution, 7, 227. |
[100] |
Wang YD, Qiu L, Wang B, Guan ZY, Dong Z, Zhang J, Cao S, Yang LL, Wang B, Gong Z, Zhang LW, Ma WH, Liu Z, Zhang DL, Wang GR, Yin P (2024) Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science, 384, 1453-1460.
DOI PMID |
[101] | Wang ZN, Receveur JP, Pu J, Cong HS, Richards C, Liang MX, Chung H (2022) Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife, 11, e80859. |
[102] | Włóka E, Boguś MI, Wrońska AK, Drozdowski M, Kaczmarek A, Sobich J, Gołębiowski M (2022) Insect cuticular compounds affect Conidiobolus coronatus (Entomopthorales) sporulation and the activity of enzymes involved in fungal infection. Scientific Reports, 12, 13641. |
[103] | Woodrow RJ, Grace JK, Nelson LJ, Haverty MI (2000) Modification of cuticular hydrocarbons of Cryptotermes brevis (Isoptera: Kalotermitidae) in response to temperature and relative humidity. Environmental Entomology, 29, 1100-1107. |
[104] | Wrońska AK, Kaczmarek A, Boguś MI, Kuna AN (2023) Lipids as a key element of insect defense systems. Frontiers in Genetics, 14, 1183659. |
[105] |
Wurdack M, Polidori C, Keller A, Feldhaar H, Schmitt T (2017) Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps. Evolution, 71, 2562-2571.
DOI PMID |
[106] |
Yan H, Opachaloemphan C, Mancini G, Yang H, Gallitto M, Mlejnek J, Leibholz A, Haight K, Ghaninia M, Huo L, Perry M, Slone J, Zhou XF, Traficante M, Penick CA, Dolezal K, Gokhale K, Stevens K, Fetter-Pruneda I, Bonasio R, Zwiebel LJ, Berger SL, Liebig J, Reinberg D, Desplan C (2017) An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell, 170, 736-747.
DOI PMID |
[107] | Yang YJ, Li XS, Liu DG, Pei XJ, Khoso AG (2022) Rapid changes in composition and contents of cuticular hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) clones adapting to desiccation stress. Journal of Economic Entomology, 115, 508-518. |
[108] | Yoon C, Yang JO, Youn YN, Kim GH (2012) Changes in cuticular hydrocarbons in different developmental stages of the bean bug, Riptortus pedestris (Hemiptera: Alydidae). Journal of Asia-Pacific Entomology, 15, 579-587. |
[109] | Zhang MD, Qian LB, Ze SZ, Yang B, Li ZB (2021) Correlation between cuticular hydrocarbons and instar numbers of the larvae of Yunnan shoot borer, Tomicus yunnanensis (Coleoptera: Scolytidae). Scientia Silvae Sinicae, 57(5), 151-159. (in Chinese with English abstract) |
[ 张梦蝶, 钱路兵, 泽桑梓, 杨斌, 李宗波 (2021) 云南切梢小蠹幼虫表皮碳氢化合物与龄数的相关性. 林业科学, 57(5), 151-159.] | |
[110] | Zhou XF, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, Reinberg D, Zwiebel LJ (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genetics, 8, e1002930. |
[1] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 王兴煜, 孟京辉, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林群落生物多样性与地上生物量的关系[J]. 生物多样性, 2024, 32(12): 24230-. |
[4] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[5] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[6] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
[7] | 张伟, 翟东东, 熊飞, 刘红艳, 陈元元, 王莹, 廖传松, 段辛斌, 田辉伍, 邓华堂, 陈大庆. 三峡库区鱼类群落结构和功能多样性[J]. 生物多样性, 2023, 31(2): 22136-. |
[8] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[9] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[10] | 陈秋菊, 孙智闲, 李雪健, 张睿, 席蕊, 田晨, 王鑫, 邢迎春, 赵亚辉. 武夷山国家公园及其周边鱼类多样性[J]. 生物多样性, 2022, 30(11): 22260-. |
[11] | 贺佳云, 张东, 储玲, 严云志. 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响[J]. 生物多样性, 2021, 29(7): 927-937. |
[12] | 张慧, 刘倩, 黄晓磊. 社会性昆虫级型和行为分化机制研究进展[J]. 生物多样性, 2021, 29(4): 507-516. |
[13] | 黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣. 生态系统多功能性的指标选择与驱动因子: 研究现状与展望[J]. 生物多样性, 2021, 29(12): 1673-1686. |
[14] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
[15] | 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn