生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 21387. DOI: 10.17520/biods.2021387
所属专题: 物种形成与系统进化
姜晓燕1,2, 高圣杰1,2, 蒋燕1,2, 田赟1,3, 贾昕1,2,3,*(), 查天山1,2,3
收稿日期:
2021-09-22
接受日期:
2022-01-06
出版日期:
2022-05-20
发布日期:
2022-02-07
通讯作者:
贾昕
作者简介:
* E-mail: xinjia@bjfu.edu.cn基金资助:
Xiaoyan Jiang1,2, Shengjie Gao1,2, Yan Jiang1,2, Yun Tian1,3, Xin Jia1,2,3,*(), Tianshan Zha1,2,3
Received:
2021-09-22
Accepted:
2022-01-06
Online:
2022-05-20
Published:
2022-02-07
Contact:
Xin Jia
摘要:
进入21世纪以来, 中国荒漠化恢复取得显著成效, 荒漠化、沙化土地面积持续减少, 植被覆盖度大幅提升, 但关于植被恢复过程中生物多样性如何变化的研究不足, 这制约着对荒漠化恢复成效的全面评估。本文基于群落调查和叶功能性状(叶片厚度、叶片干物质含量、比叶面积和叶片密度)的测定, 分析了毛乌素沙地不同恢复阶段(半固定沙地、固定沙地、结皮覆盖沙地和草本植物覆盖沙地)的植物群落物种多样性、功能多样性和系统发育多样性特征。结果表明: (1)多数叶功能性状的系统发育信号不显著, 表明环境因子对研究区植物功能性状的塑造作用很强。(2)对于α多样性, 结皮覆盖沙地的物种多样性(Shannon-Wiener多样性, H)、物种丰富度(S)、功能丰富度(FRic)及系统发育多样性(PD)指数均显著低于其他恢复阶段, 而其他3个阶段间无显著差异; 这些指数间均显著正相关, 表明物种多样性、功能多样性和系统发育多样性在植被恢复过程中协同变化。(3) β多样性指数随恢复阶段间隔增加而逐渐增大, 表明物种组成、功能属性及系统发育关系随植被恢复持续变化, 且半固定沙地到固定沙地的群落物种组成、功能属性及系统发育关系更替最快, 导致群落间差异最大。(4)固定沙地、结皮覆盖沙地和草本植物覆盖沙地群落系统发育结构均趋向于发散, 表明竞争排斥是群落构建的主要驱动力; 而半固定沙地群落系统发育结构无一致规律, 表明群落构建可能受到生境过滤和竞争排斥的综合作用。研究结果可为植被建设与管理提供参考, 为毛乌素沙地生态保育和生物多样性的保护提供科学依据。
姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山 (2022) 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性. 生物多样性, 30, 21387. DOI: 10.17520/biods.2021387.
Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha (2022) Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland. Biodiversity Science, 30, 21387. DOI: 10.17520/biods.2021387.
恢复阶段 Restoration phases | 植被盖度 Vegetation cover (%) | 土壤全碳含量 Soil total C content (g/kg) | 土壤全氮含量 Soil total N content (g/kg) | 土壤全磷含量 Soil total P content (g/kg) | 土壤氮磷比 Soil N : P | 土壤碳氮比 Soil C : N | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
半固定沙地 Semi-fixed dunes (D1), n = 3 | 26.30 ± 1.84a | 0.92 ± 0.03a | 0.05 ± 0.01a | 0.20 ± 0.01a | 0.24 ± 0.03a | 20.14 ± 2.40a | 杨柴、赖草、油蒿、草木樨状黄耆、沙生针茅、虫实、沙米 Hedysarum leave, Leymus secalinus, Artemisia ordosica, Astragalus melilotoides, Stipa glareosa, Corispermum hyssopifolium, Agriophyllum squarrosum |
固定沙地 Fixed dunes (D2), n = 4 | 34.55 ± 2.00b | 1.56 ± 0.19b | 0.08 ± 0.00ab | 0.21 ± 0.00b | 0.40 ± 0.02a | 18.76 ± 2.23a | 油蒿、柠条、赖草、草木樨状黄耆、阿尔泰狗娃花、乳浆大戟 Artemisia ordosica, Caragana korshinskii, Leymus secalinus, Astragalus melilotoides, Heteropappus altaicus, Euphorbia esula |
结皮覆盖沙地 Fixed dunes covered with crusts (D3), n = 4 | 55.33 ± 1.74c | 2.55 ± 0.09c | 0.15 ± 0.02bc | 0.28 ± 0.02b | 0.53 ± 0.07ab | 17.88 ± 2.73a | 油蒿、白草、地稍瓜、杨柴、阿尔泰狗娃花 Artemisia ordosica, Pennisetum centrasiaticum, Cynanchum thesioides, Hedysarum leave, Heteropappus altaicus |
草本植物覆盖沙地 Fixed dunes with herbs (D4), n = 5 | 69.19 ± 1.24d | 3.14 ± 0.20d | 0.23 ± 0.04c | 0.31 ± 0.03b | 0.75 ± 0.13b | 15.09 ± 2.22a | 油蒿、沙木蓼、阿尔泰狗娃花、沙柳、杨柴、白草、赖草、鹅绒藤 Artemisia ordosica, Atraphaxis bracteata, Heteropappus altaicus, Salix cheilophila, Hedysarum leave, Pennisetum centrasiaticum, Leymus secalinus, Cynanchum chinense |
表1 毛乌素沙地植被不同恢复阶段植物群落特征及土壤总碳、氮、磷含量(平均值 ± 标准误差)
Table 1 Plant community characteristics and soil carbon, nitrogen and phosphorous contents at different phases of vegetation restoration in the Mu Us sandy grassland (mean ± SE)
恢复阶段 Restoration phases | 植被盖度 Vegetation cover (%) | 土壤全碳含量 Soil total C content (g/kg) | 土壤全氮含量 Soil total N content (g/kg) | 土壤全磷含量 Soil total P content (g/kg) | 土壤氮磷比 Soil N : P | 土壤碳氮比 Soil C : N | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
半固定沙地 Semi-fixed dunes (D1), n = 3 | 26.30 ± 1.84a | 0.92 ± 0.03a | 0.05 ± 0.01a | 0.20 ± 0.01a | 0.24 ± 0.03a | 20.14 ± 2.40a | 杨柴、赖草、油蒿、草木樨状黄耆、沙生针茅、虫实、沙米 Hedysarum leave, Leymus secalinus, Artemisia ordosica, Astragalus melilotoides, Stipa glareosa, Corispermum hyssopifolium, Agriophyllum squarrosum |
固定沙地 Fixed dunes (D2), n = 4 | 34.55 ± 2.00b | 1.56 ± 0.19b | 0.08 ± 0.00ab | 0.21 ± 0.00b | 0.40 ± 0.02a | 18.76 ± 2.23a | 油蒿、柠条、赖草、草木樨状黄耆、阿尔泰狗娃花、乳浆大戟 Artemisia ordosica, Caragana korshinskii, Leymus secalinus, Astragalus melilotoides, Heteropappus altaicus, Euphorbia esula |
结皮覆盖沙地 Fixed dunes covered with crusts (D3), n = 4 | 55.33 ± 1.74c | 2.55 ± 0.09c | 0.15 ± 0.02bc | 0.28 ± 0.02b | 0.53 ± 0.07ab | 17.88 ± 2.73a | 油蒿、白草、地稍瓜、杨柴、阿尔泰狗娃花 Artemisia ordosica, Pennisetum centrasiaticum, Cynanchum thesioides, Hedysarum leave, Heteropappus altaicus |
草本植物覆盖沙地 Fixed dunes with herbs (D4), n = 5 | 69.19 ± 1.24d | 3.14 ± 0.20d | 0.23 ± 0.04c | 0.31 ± 0.03b | 0.75 ± 0.13b | 15.09 ± 2.22a | 油蒿、沙木蓼、阿尔泰狗娃花、沙柳、杨柴、白草、赖草、鹅绒藤 Artemisia ordosica, Atraphaxis bracteata, Heteropappus altaicus, Salix cheilophila, Hedysarum leave, Pennisetum centrasiaticum, Leymus secalinus, Cynanchum chinense |
功能性状 Functional traits | K值 K value | P |
---|---|---|
叶片厚度 Leaf thichness (LT) (mm) | 0.449 | 0.004* |
叶片干物质含量 Leaf dry matter content (LDMC) (mg/g) | 0.133 | 0.951 |
比叶面积 Specific leaf area (SLA) (cm2/g) | 0.100 | 0.993 |
叶片密度 Leaf density (LD) (g/cm3) | 0.123 | 0.927 |
表2 毛乌素沙地植被不同恢复阶段4个叶片功能性状的系统发育信号
Table 2 Phylogenetic signal of four leaf functional traits at different phases of vegetation restoration in the Mu Us sandy grassland
功能性状 Functional traits | K值 K value | P |
---|---|---|
叶片厚度 Leaf thichness (LT) (mm) | 0.449 | 0.004* |
叶片干物质含量 Leaf dry matter content (LDMC) (mg/g) | 0.133 | 0.951 |
比叶面积 Specific leaf area (SLA) (cm2/g) | 0.100 | 0.993 |
叶片密度 Leaf density (LD) (g/cm3) | 0.123 | 0.927 |
图1 毛乌素沙地植被不同恢复阶段植物群落物种、功能及系统发育α多样性比较(平均值 ± 标准误差)。n: 样本量; D1: 半固定沙地; D2: 固定沙地; D3: 结皮覆盖沙地; D4: 草本植物覆盖沙地。不同小写字母表示组间差异显著(P < 0.05)。
Fig. 1 Species, functional and phylogenetic α-diversity of plant communities at different phases of vegetation restoration in the Mu Us sandy grassland (mean ± SE). n, The sample size; D1, Semi-fixed dunes; D2, Fixed dunes; D3, Fixed dunes covered with crusts; D4, Fixed dunes with herbs. Different lowercases indicate significant differences (P < 0.05).
图2 毛乌素沙地植被不同恢复阶段植物群落的物种、功能和系统发育β多样性。D1、D2、D3和D4的含义见图1。
Fig. 2 Species, functional and phylogenetic β-diversity of plant communities across restoration phases in the Mu Us sandy grassland. D1, D2, D3 and D4 are the same as in Fig. 1.
物种多样性 Species diversity | 功能多样性 Functional diversity | 系统发育多样性 Phylogenetic diversity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H | S | J | FRic | FEve | RaoQ | PD | MPD | NRI | ||
物种多样性 Species diversity | S | 0.77** | ||||||||
J | 0.48* | ?0.12 | ||||||||
功能多样性 Functional diversity | FRic | 0.85** | 0.89*** | 0.17 | ||||||
FEve | 0.16 | 0.33 | ?0.16 | 0.34* | ||||||
RaoQ | 0.53* | 0.75*** | ?0.12 | 0.78*** | 0.60* | |||||
系统发育多样性 Phylogenetic diversity | PD | 0.78*** | 0.95*** | ?0.08 | 0.82*** | 0.31 | 0.70** | |||
MPD | ?0.23 | ?0.42 | 0.49* | ?0.27 | ?0.21 | ?0.26 | ?0.46* | |||
NRI | ?0.14 | 0.005 | ?0.41 | ?0.11 | 0.18 | ?0.04 | 0.04 | ?0.85*** | ||
NTI | 0.20 | 0.15 | ?0.05 | 0.21 | ?0.36 | ?0.0.8 | 0.05 | ?0.39 | 0.32 |
表3 毛乌素沙地植被不同恢复阶段植物群落α多样性指数间的Pearson相关系数
Table 3 Pearson correlation coefficients among α-diversity indices in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland
物种多样性 Species diversity | 功能多样性 Functional diversity | 系统发育多样性 Phylogenetic diversity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H | S | J | FRic | FEve | RaoQ | PD | MPD | NRI | ||
物种多样性 Species diversity | S | 0.77** | ||||||||
J | 0.48* | ?0.12 | ||||||||
功能多样性 Functional diversity | FRic | 0.85** | 0.89*** | 0.17 | ||||||
FEve | 0.16 | 0.33 | ?0.16 | 0.34* | ||||||
RaoQ | 0.53* | 0.75*** | ?0.12 | 0.78*** | 0.60* | |||||
系统发育多样性 Phylogenetic diversity | PD | 0.78*** | 0.95*** | ?0.08 | 0.82*** | 0.31 | 0.70** | |||
MPD | ?0.23 | ?0.42 | 0.49* | ?0.27 | ?0.21 | ?0.26 | ?0.46* | |||
NRI | ?0.14 | 0.005 | ?0.41 | ?0.11 | 0.18 | ?0.04 | 0.04 | ?0.85*** | ||
NTI | 0.20 | 0.15 | ?0.05 | 0.21 | ?0.36 | ?0.0.8 | 0.05 | ?0.39 | 0.32 |
[1] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] |
Angiosperm Phylogeny Group APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
DOI URL |
[3] |
Bai YX, She WW, Michalet R, Zheng J, Qin SG, Zhang YQ (2018) Benefactor facilitation and beneficiary feedback effects drive shrub-dominated community succession in a semi-arid dune ecosystem. Applied Vegetation Science, 21, 595-606.
DOI URL |
[4] |
Bai YX, Zhang YQ, Michalet R, She WW, Jia X, Qin SG (2019) Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient. Basic and Applied Ecology, 38, 1-12.
DOI URL |
[5] |
Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
PMID |
[6] | Bu WS, Zang RG, Ding Y (2014) Functional diversity increases with species diversity along successional gradient in a secondary tropical lowland rainforest. Tropical Ecology, 55, 393-401. |
[7] |
Chen B, Jiang L, Xie ZY, Li YD, Li JX, Li MJ, Wei CS, Xing C, Liu JF, He ZS (2021) Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamii natural forest. Biodiversity Science, 29, 439-448. (in Chinese with English abstract)
DOI |
[陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声 (2021) 格氏栲天然林林窗植物物种多样性与系统发育多样性. 生物多样性, 29, 439-448.]
DOI |
|
[8] | Chen HH, Xu GX, Ma FQ, Liu S, Zhang MM, Cao XW, Chen J, Zhao GD, Yang HG, Shi ZM (2020) Phylogenetic structure of undergrowth layers across subalpine dark coniferous forests and their post-harvesting secondary forests in western Sichuan. Scientia Silvae Sinicae, 56(7), 1-11. (in Chinese with English abstract) |
[陈欢欢, 许格希, 马凡强, 刘顺, 张淼淼, 曹向文, 陈健, 赵广东, 杨洪国, 史作民 (2020) 川西亚高山暗针叶林及其采伐次生林林下分层谱系结构. 林业科学, 56(7), 1-11.] | |
[9] |
Cheng YK, Zhang H, Wang X, Long WX, Li C, Fang YS, Fu MQ, Zhu KX (2019) Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly. Chinese Journal of Plant Ecology, 43, 217-226. (in Chinese with English abstract)
DOI URL |
[程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新 (2019) 功能多样性和谱系多样性对热带云雾林群落构建的影响. 植物生态学报, 43, 217-226.]
DOI |
|
[10] |
Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
DOI URL |
[11] |
Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 92, 1573-1581.
PMID |
[12] |
Forest F, Grenyer R, Rouget M, Jonathan Davies T, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
DOI URL |
[13] | Guo K (2000) Cyclic succession of Artemisia ordosica Krasch community in the Mu Us sandy grassland. Acta Phytoecologica Sinica, 24, 243-247. (in Chinese with English abstract) |
[郭柯 (2000) 毛乌素沙地油蒿群落的循环演替. 植物生态学报, 24, 243-247.] | |
[14] | Ha WX, Xiao GY, Cao JH, Liu YG, Cui M, Zhou JX (2020) Species composition and diversity of plant community at different restoration stages of karst graben basin. Chinese Journal of Ecology, 39, 36-45. (in Chinese with English abstract) |
[哈文秀, 肖桂英, 曹建华, 刘玉国, 崔明, 周金星 (2020) 喀斯特断陷盆地区不同恢复阶段群落物种组成与多样性特征. 生态学杂志, 39, 36-45.] | |
[15] |
Hao SJ, Li XY, Hou MM, Zhao XH (2019) Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China. Chinese Journal of Plant Ecology, 43, 208-216. (in Chinese with English abstract)
DOI URL |
[郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海 (2019) 长白山温带森林不同演替阶段群落功能性状的空间变化. 植物生态学报, 43, 208-216.]
DOI |
|
[16] |
Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432.
DOI URL |
[17] |
Hu G, Jin Y, Liu JL, Yu MJ (2014) Functional diversity versus species diversity: Relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest. Ecological Research, 29, 897-903.
DOI URL |
[18] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography, pp. 340-348. Princeton University Press, Princeton. |
[19] |
Jia X, Zha TS, Gong JN, Zhang YQ, Wu B, Qin SG, Peltola H (2018) Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 259, 250- 259.
DOI URL |
[20] | Kang TT, Li Z, Gao YC (2019) Effectiveness of ecological restoration in the mountain-oasis-desert system of northwestern arid area of China. Acta Ecologica Sinica, 39, 7418-7431. (in Chinese with English abstract) |
[康婷婷, 李增, 高彦春 (2019) 西北干旱区山地-绿洲-荒漠系统生态恢复综合效益评估. 生态学报, 39, 7418-7431.] | |
[21] |
Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
[22] | Li CJ, Fu BJ, Wang S, Stringer LC, Wang YP, Li ZD, Liu YX, Zhou WX (2021) Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2, 858- 873. |
[23] |
Li XR, Jia XH, Long LQ, Zerbe S (2005) Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant and Soil, 277, 375-385.
DOI URL |
[24] | Lü P, Zuo XA, Yue XY, Zhang J, Zhao SL, Cheng QP (2018) Temporal changes of vegetation characteristics during the long-term grazing exclusion in Horqin Sandy Land. Chinese Journal of Ecology, 37, 2880-2888. (in Chinese with English abstract) |
[吕鹏, 左小安, 岳喜元, 张晶, 赵生龙, 程清平 (2018) 科尔沁沙地封育过程中植被特征的动态变化. 生态学杂志, 37, 2880-2888.] | |
[25] | Ma JM, Lu GQ, Zhao P, Yu Y, Gu JC (2021) Study on species diversity under different forest types in Chongling watershed. Forestry and Ecological Sciences, 36, 111-118. (in Chinese with English abstract) |
[马佳明, 陆贵巧, 赵鹏, 于跃, 谷建才 (2021) 崇陵流域不同林分类型下物种多样性研究. 林业与生态科学, 36, 111-118.] | |
[26] | Ma KP, Huang JH, Yu SL, Chen LZ (1995) Plant community diversity in Dongling Mountain, Beijing, China. II. Species richness, evenness and species diversities. Acta Ecologica Sinica, 15, 268-277. (in Chinese with English abstract) |
[马克平, 黄建辉, 于顺利, 陈灵芝 (1995) 北京东灵山地区植物群落多样性的研究. II. 丰富度、均匀度和物种多样性指数. 生态学报, 15, 268-277.] | |
[27] |
Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118.
DOI URL |
[28] | Odum EP (1969) The strategy of ecosystem development. Science, 164, 262-270. |
[29] |
Peco B, Carmona CP, de Pablos I, Azcárate FM (2012) Effects of grazing abandonment on functional and taxonomic diversity of Mediterranean grasslands. Agriculture, Ecosystems & Environment, 152, 27-32.
DOI URL |
[30] | Piroozi N, Kohandel A, Jafari M, Tavili A, Farizhendi GM (2018) Plant alpha and beta diversity in relation to spatial distribution patterns in different plant community types. Pakistan Journal of Botany, 50, 2317-2323. |
[31] |
Qin H, Wang Y, Zhang F, Chen J, Zhang GP, Dong G (2016) Application of species, phylogenetic and functional diversity to the evaluation on the effects of ecological restoration on biodiversity. Ecological Informatics, 32, 53-62.
DOI URL |
[32] |
Qin H, Zhang YB, Dong G, Zhang F (2019) Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chinese Journal of Plant Ecology, 43, 762-773. (in Chinese with English abstract)
DOI URL |
[秦浩, 张殷波, 董刚, 张峰 (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43, 762-773.]
DOI |
|
[33] | Qin SG, Wu B, Zhang YQ (2010) A review of above-ground interactions in silvopasture systems. Acta Ecologica Sinica, 30, 3616-3627. (in Chinese with English abstract) |
[秦树高, 吴斌, 张宇清 (2010) 林草复合系统地上部分种间互作关系研究进展. 生态学报, 30, 3616-3627.] | |
[34] |
Ricotta C (2005) A note on functional diversity measures. Basic and Applied Ecology, 6, 479-486.
DOI URL |
[35] |
She WW, Bai YX, Zhang YQ, Qin SG, Liu Z, Wu B (2017) Plasticity in meristem allocation as an adaptive strategy of a desert shrub under contrasting environments. Frontiers in Plant Science, 8, 1933.
DOI URL |
[36] | Sun CL, Chai ZZ, Liu GB, Xue S (2017) Changes in species diversity patterns and spatial heterogeneity during the secondary succession of grassland vegetation on the Loess Plateau, China. Frontiers in Plant Science, 8, 1465. |
[37] |
Swenson NG (2013) The assembly of tropical tree communities—The advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264-276.
DOI URL |
[38] | Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. |
[39] | Wang SY, Lü GH, Jiang LM, Wang HF, Li Y, Wang JL (2020) Multi-scale analysis on functional diversity and phylogenetic diversity of typical plant community in Ebinur Lake. Ecology and Environmental Sciences, 29, 889-900. (in Chinese with English abstract) |
[王诗韵, 吕光辉, 蒋腊梅, 王恒方, 李岩, 王金龙 (2020) 不同尺度下艾比湖典型植物群落功能多样性和系统发育多样性研究. 生态环境学报, 29, 889-900.] | |
[40] | Wang XY, Li YL, Lian J, Duan YL, Wang LL (2021) Relationship between vegetation coverage and climate change in semiarid sandy land and the significance to ecological construction. Journal of Desert Research, 41, 183-194. (in Chinese with English abstract) |
[王旭洋, 李玉霖, 连杰, 段育龙, 王立龙 (2021) 半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义. 中国沙漠, 41, 183-194.] | |
[41] |
Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
DOI URL |
[42] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
DOI URL |
[43] | Wu Y, Liu Q, He H, Lin B (2004) Dynamics of species diversity in artificial restoration process of subalpine coniferous forest. Chinese Journal of Applied Ecology, 15, 1301-1306. (in Chinese with English abstract) |
[吴彦, 刘庆, 何海, 林波 (2004) 亚高山针叶林人工恢复过程中物种多样性变化. 应用生态学报, 15, 1301-1306.] | |
[44] | Xue QN, Yan M, Bi RC (2015) Functional diversity research of tree and shrub layers in forest communities of the Wulu Mountains Nature Reserve in Shanxi, China. Acta Ecologica Sinica, 35, 7023-7032. (in Chinese with English abstract) |
[薛倩妮, 闫明, 毕润成 (2015) 山西五鹿山森林群落木本植物功能多样性. 生态学报, 35, 7023-7032.] | |
[45] | Yan F, Cong RC (2015) Study on classification progress and cataloging system of sandy land in China. Geographical Research, 34, 455-465. (in Chinese with English abstract) |
[闫峰, 丛日春 (2015) 中国沙地分类进展及编目体系. 地理研究, 34, 455-465.] | |
[46] | Yang XX, Li MQ, He XD, You WX, Yu D, Zhang CH, Chen N (2020) Effects of functional diversity on species diversity of plant communities in sandy land. Acta Scientiarum Naturalium Universitatis Nankaiensis, 53(4), 75-80. (in Chinese with English abstract) |
[杨祥祥, 李梦琦, 何兴东, 尤万学, 余殿, 张彩华, 陈娜 (2020) 沙地植物群落功能多样性对物种多样性的影响. 南开大学学报(自然科学版), 53(4), 75- 80.] | |
[47] | Yu X, Wang X, Wu T, Wang QX, Ma Y, Xie L, Song NP (2021) Relationship between restoration of plant diversity and soil habitat in desert steppe. Acta Ecologica Sinica, 41, 8516-8524. (in Chinese with English abstract) |
[余轩, 王兴, 吴婷, 王启学, 马昀, 谢莉, 宋乃平 (2021) 荒漠草原植物多样性恢复与土壤生境的关系. 生态学报, 41, 8516-8524.] | |
[48] | Zhang JY, Zhao HL, Zhang TH, Zhao XY (2004) Dynamics of species diversity of communities in restoration processes in Horqin Sandy Land. Acta Phytoecologica Sinica, 28, 86-92. (in Chinese with English abstract) |
[张继义, 赵哈林, 张铜会, 赵学勇 (2004) 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态. 植物生态学报, 28, 86-92.]
DOI |
|
[49] | Zhang MM, Qin H, Wang Y, Zhang F (2016) Beta diversity of wetland vegetation in the middle and upper reaches of the Fenhe River watershed. Acta Ecologica Sinica, 36, 3292-3299. (in Chinese with English abstract) |
[张淼淼, 秦浩, 王烨, 张峰 (2016) 汾河中上游湿地植被β多样性. 生态学报, 36, 3292-3299.] | |
[50] | Zhang XS (1994) Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoecologica Sinica, 18, 1-16. (in Chinese with English abstract) |
[张新时 (1994) 毛乌素沙地的生态背景及其草地建设的原则与优化模式. 植物生态学报, 18, 1-16.] | |
[51] | Zhao XN, Qin H, Zhang F (2017) Diversity of forest communities in the upstream and middle reaches of the Wenyu River watershed, Shanxi. Acta Ecologica Sinica, 37, 1093-1102. (in Chinese with English abstract) |
[赵小娜, 秦浩, 张峰 (2017) 山西文峪河上中游森林群落多样性. 生态学报, 37, 1093-1102.] |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[7] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[8] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[9] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[10] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[11] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[12] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[13] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[14] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[15] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn