生物多样性 ›› 2021, Vol. 29 ›› Issue (4): 507-516. DOI: 10.17520/biods.2020224
所属专题: 昆虫多样性与生态功能
收稿日期:
2020-05-29
接受日期:
2020-09-01
出版日期:
2021-04-20
发布日期:
2021-04-20
通讯作者:
黄晓磊
基金资助:
Hui Zhang, Qian Liu, Xiaolei Huang()
Received:
2020-05-29
Accepted:
2020-09-01
Online:
2021-04-20
Published:
2021-04-20
Contact:
Xiaolei Huang
About author:
* E-mail: huangxl@fafu.edu.cn摘要:
社会性的出现是生物演化过程中的重要革新, 理解社会性的演化和调控机制具有重要的理论和实际意义。社会性昆虫的个体间有着明显的级型分化和劳动分工, 这有利于它们适应复杂的环境变化。理解社会性昆虫如何产生不同的形态、行为和生活史特性, 一直是进化和发育生物学的重要目标。随着测序技术的不断更新及生物信息学的快速发展, 已经有众多关于社会性昆虫级型和行为分化机制的研究报道。本文通过整理社会性昆虫研究的已有成果, 从环境因素、生理调控和分子机制等方面对社会性昆虫级型和行为分化机制相关研究进展进行了综述, 并对未来的研究方向做出了展望。根据现有证据, 社会性昆虫所生活的生物环境(食物营养、信息素、表皮碳氢化合物)和非生物环境(温度、气候等)均能直接或间接影响社会性昆虫级型和行为的分化; 保幼激素、蜕皮激素、类胰岛素及生物胺等内分泌激素和神经激素对社会性昆虫的级型和行为分化也有重要的调控作用; 此外, 遗传因素、新基因等DNA序列或基因组结构上的变化以及表观遗传修饰、基因的差异表达等基因调控机制均能不同程度地影响社会性昆虫的行为分化。本文建议加强昆虫纲其他社会性类群如半翅目蚜虫和缨翅目蓟马等的社会性行为及其演化机制的研究, 以加深对社会性昆虫起源及其行为演化的理解和认识。
张慧, 刘倩, 黄晓磊 (2021) 社会性昆虫级型和行为分化机制研究进展. 生物多样性, 29, 507-516. DOI: 10.17520/biods.2020224.
Hui Zhang, Qian Liu, Xiaolei Huang (2021) Mechanisms regulating caste and behavior differentiation in social insects. Biodiversity Science, 29, 507-516. DOI: 10.17520/biods.2020224.
影响因素 Influencing factors | 昆虫类群 Insect groups | 劳动分工类型 Labour division | 参考文献 References | |
---|---|---|---|---|
外界环境 External environment | 营养 Nutrition | 西方蜜蜂 Apis mellifera | 蜂后-工蜂 Queen-worker | Kamakura, |
表皮碳氢化合物 Cuticular hydrocarbons | 红胡须蚁 Pogonomyrmex barbatus | 觅食-侦查 Foraging-patrolling | Greene & Gordon, | |
信息素 Pheromone | 黄胸散白蚁 Reticulitermes speratus | 生殖蚁-工蚁 Neotenics-worker | Matsuura et al, | |
王后年龄 Queen age | 罗纹须蚁 Pogonomyrmex rugosus | 蚁后-工蚁 Queen-worker | Schwander et al, | |
海拔和季节 Elevation and season | 蜜蜂总科 Apoidea | 独居-合作筑巢 Solitary-cooperative | Kocher et al, | |
气候 Climate | 马蜂属 Polistes | 合作繁殖 Cooperative breeding | Sheehan et al, | |
温度 Temperature | 台湾乳白蚁 Coptotermes formosanus | 工蚁-兵蚁 Worker-soldier | Tarver et al, | |
生理调控 Physiological regulation | 保幼激素 Juvenile hormone | 八刺顶切叶蚁 Acromyrmex octospinosus | 巢内活动-觅食 Nest work-foraging | Norman & Hughes, |
蜕皮激素 Ecdysone | 内华达古白蚁 Zootermopsis nevadensis | 兵蚁-工蚁 Soldier-worker | Masuoka et al, | |
类胰岛素 Insulin-like peptides | 毕氏卵角蚁 Ooceraea biroi | 工蚁-生殖蚁 Worker-reproductives | Chandra et al, | |
生物胺 Biogenic amine | 西方蜜蜂 Apis mellifera | 攻击防御 Defensive aggression | Nouvian et al, | |
分子调控 Molecular regulation | 遗传决定 Genetic determination | 棘顶切叶蚁 Acromyrmex echinatior | 大工蚁-小工蚁 Major-minor worker | Hughes et al, |
新基因 Novel gene | 西方蜜蜂 Apis mellifera | 工蜂特性 Worker traits | Johnson & Tsutsui, | |
表观遗传修饰 Epigenetic modification | 西方蜜蜂 Apis mellifera | 蜂后-工蜂 Queen-worker | He et al, | |
基因差异表达 Gene differential expression | 北美散白蚁 Reticulitermes flavipes | 兵蚁-工蚁(生殖蚁) Soldier-worker (reproductives) | Wu et al, |
表1 社会性昆虫级型和行为分化的影响因素
Table 1 Influencing factors underlying caste and behavior differentiation in social insects
影响因素 Influencing factors | 昆虫类群 Insect groups | 劳动分工类型 Labour division | 参考文献 References | |
---|---|---|---|---|
外界环境 External environment | 营养 Nutrition | 西方蜜蜂 Apis mellifera | 蜂后-工蜂 Queen-worker | Kamakura, |
表皮碳氢化合物 Cuticular hydrocarbons | 红胡须蚁 Pogonomyrmex barbatus | 觅食-侦查 Foraging-patrolling | Greene & Gordon, | |
信息素 Pheromone | 黄胸散白蚁 Reticulitermes speratus | 生殖蚁-工蚁 Neotenics-worker | Matsuura et al, | |
王后年龄 Queen age | 罗纹须蚁 Pogonomyrmex rugosus | 蚁后-工蚁 Queen-worker | Schwander et al, | |
海拔和季节 Elevation and season | 蜜蜂总科 Apoidea | 独居-合作筑巢 Solitary-cooperative | Kocher et al, | |
气候 Climate | 马蜂属 Polistes | 合作繁殖 Cooperative breeding | Sheehan et al, | |
温度 Temperature | 台湾乳白蚁 Coptotermes formosanus | 工蚁-兵蚁 Worker-soldier | Tarver et al, | |
生理调控 Physiological regulation | 保幼激素 Juvenile hormone | 八刺顶切叶蚁 Acromyrmex octospinosus | 巢内活动-觅食 Nest work-foraging | Norman & Hughes, |
蜕皮激素 Ecdysone | 内华达古白蚁 Zootermopsis nevadensis | 兵蚁-工蚁 Soldier-worker | Masuoka et al, | |
类胰岛素 Insulin-like peptides | 毕氏卵角蚁 Ooceraea biroi | 工蚁-生殖蚁 Worker-reproductives | Chandra et al, | |
生物胺 Biogenic amine | 西方蜜蜂 Apis mellifera | 攻击防御 Defensive aggression | Nouvian et al, | |
分子调控 Molecular regulation | 遗传决定 Genetic determination | 棘顶切叶蚁 Acromyrmex echinatior | 大工蚁-小工蚁 Major-minor worker | Hughes et al, |
新基因 Novel gene | 西方蜜蜂 Apis mellifera | 工蜂特性 Worker traits | Johnson & Tsutsui, | |
表观遗传修饰 Epigenetic modification | 西方蜜蜂 Apis mellifera | 蜂后-工蜂 Queen-worker | He et al, | |
基因差异表达 Gene differential expression | 北美散白蚁 Reticulitermes flavipes | 兵蚁-工蚁(生殖蚁) Soldier-worker (reproductives) | Wu et al, |
[1] | Ament SA, Corona M, Pollock HS, Robinson GE (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proceedings of the National Academy of Sciences, USA, 105,4226-4231. |
[2] |
Ament SA, Velarde RA, Kolodkin MH, Moyse D, Robinson GE (2011) Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Molecular Biology, 20,335-345.
DOI URL PMID |
[3] |
Amsalem E, Malka O, Grozinger C, Hefetz A (2014) Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. BMC Evolutionary Biology, 14,45.
URL PMID |
[4] |
Anderson KE, Gadau J, Mott BM, Johnson RA, Altamirano A, Strehl C, Fewell JH (2006) Distribution and evolution of genetic caste determination in Pogonomyrmex seed- harvester ants. Ecology, 87,2171-2184.
DOI URL PMID |
[5] | Anderson M (1984) The evolution of eusociality. Annual Review of Ecology and Systematics, 15,165-189. |
[6] |
Aonuma H, Watanabe T (2012) Octopaminergic system in the brain controls aggressive motivation in the ant, Formica japonica. Acta Biologica Hungarica, 63,63-68.
URL PMID |
[7] | Barron AB, Maleszka R, Vander Meer RK, Robinson GE (2007) Octopamine modulates honey bee dance behavior. Proceedings of the National Academy of Sciences, USA, 104,1703-1707. |
[8] | Barron AB, Oldroyd BP (2001) Social regulation of ovary activation in “anarchistic” honey-bees (Apis mellifera). Behavioral Ecology and Sociobiology, 49,214-219. |
[9] |
Berens AJ, Hunt JH, Toth AL (2015) Comparative transcriptomics of convergent evolution: Different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Molecular Biology and Evolution, 32,690-703.
URL PMID |
[10] |
Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM, Zhang P, Wen P, Xiang H, Ding Y, Jin ZH, Shen SS, Wang ZJ, Wang W, Wang J, Berger SL, Liebig J, Zhang GJ, Reinberg D (2012) Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 22,1755-1764.
DOI URL PMID |
[11] |
Bonasio R, Zhang GJ, Ye CY, Mutti NS, Fang XD, Qin N, Donahue G, Yang PC, Li QY, Li C, Zhang P, Huang ZY, Berger SL, Reinberg D, Wang J, Liebig J (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 329,1068-1071.
URL PMID |
[12] | Brian MV, Hibble J (1964) Studies of caste differentiation in Myrmica rubra L. Insectes Sociaux, 11,223-238. |
[13] | Cahan SH, Keller L (2003) Complex hybrid origin of genetic caste determination in harvester ants. Nature, 424,306-309. |
[14] | Cassill DL, Tschinkel WR (1999) Task selection by workers of the fire ant Solenopsis invicta. Behavioral Ecology and Sociobiology, 45,301-310. |
[15] |
Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, Mckenzie SK, Libbrecht R, Kronauer DJC (2018) Social regulation of insulin signaling and the evolution of eusociality in ants. Science, 361,398-402.
URL PMID |
[16] | Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz BR, Price ND, Robinson GE (2011) Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proceedings of the National Academy of Sciences, USA, 108,18020-18025. |
[17] | Chittka A, Wurm Y, Chittka L (2012) Epigenetics: The making of ant castes. Current Biology, 22,R835-R838. |
[18] |
Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). Journal of Insect Physiology, 54,922-930.
URL PMID |
[19] |
Corona M, Libbrecht R, Wheeler DE (2016) Molecular mechanisms of phenotypic plasticity in social insects. Current Opinion in Insect Science, 13,55-60.
URL PMID |
[20] |
Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L (2013) Vitellogenin underwent subfunctionali-zation to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genetics, 9,e1003730.
DOI URL PMID |
[21] | Crespi BJ (1992) Eusociality in Australian gall thrips. Nature, 359,724-726. |
[22] | Daugherty THF, Toth AL, Robinson GE (2011) Nutrition and division of labor: Effects on foraging and brain gene expression in the paper wasp Polistes metricus. Molecular Ecology, 20,5337-5347. |
[23] |
de Azevedo SV, Hartfelder K (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development—Differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. Journal of Insect Physiology, 54,1064-1071.
DOI URL PMID |
[24] |
Dong SZ, Ye GY, Guo JY, Hu C (2009) Roles of ecdysteroid and juvenile hormone in vitellogenesis in an endoparasitic wasp, Pteromalus puparum (Hymenoptera: Pteromalidae). General and Comparative Endocrinology, 160,102-108.
URL PMID |
[25] | Fei HX, Henderson G (2002) Formosan subterranean termite (Isoptera: Rhinotermitidae) wood consumption and worker survival as affected by temperature and soldier proportion. Environmental Entomology, 31,509-514. |
[26] |
Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T, Guigó R, Sumner S (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biology, 14,R20.
URL PMID |
[27] |
Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays, 27,999-1010.
DOI URL PMID |
[28] | Frumhoff PC, Baker J (1988) A genetic component to division of labour within honey bee colonies. Nature, 333,358-361. |
[29] |
Gadagkar R, Gordon D, Keller L, Michod R, Queller D, Robinson GE, Strassmann J, West-Eberhard MJ (2019) Insights and opportunities in insect social behavior. Current Opinion in Insect Science, 34, ix-xx.
DOI URL PMID |
[30] | Greene MJ, Gordon DM (2003) Social insects: Cuticular hydrocarbons inform task decisions. Nature, 423,32. |
[31] | Harpur BA, Kent CF, Molodtsova D, Lebon JMD, Alqarni AS, Owayss AA, Zayed A (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proceedings of the National Academy of Sciences, USA, 111,2614-2619. |
[32] |
Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu HF, Hughes DST, Huylmans AK, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs MD, Poelchau M, Qu JX, Schaub F, Wada-Katsumata A, Worley KC, Xie QL, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology & Evolution, 2,557-566.
DOI URL PMID |
[33] |
Hayashi Y, Lo N, Miyata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science, 318,985-987.
DOI URL PMID |
[34] | Haydak MH (1943) Larval food and development of castes in the honeybee. Journal of Economic Entomology, 36,778-792. |
[35] |
He XJ, Zhou LB, Pan QZ, Barron AB, Yan WY, Zeng ZJ (2017) Making a queen: An epigenetic analysis of the robustness of the honeybee (Apis mellifera) queen developmental pathway. Molecular Ecology, 26,1598-1607.
DOI URL PMID |
[36] | Hughes WOH, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proceedings of the National Academy of Sciences, USA, 100,9394-9397. |
[37] | Ishikawa Y, Aonuma H, Sasaki K, Miura T (2016) Tyraminergic and octopaminergic modulation of defensive behavior in termite soldier. PLoS ONE, 11,e0154230. |
[38] |
Jaffé R, Kronauer DJ, Kraus FB, Boomsma JJ, Moritz RF (2007) Worker caste determination in the army ant Eciton burchellii. Biology Letters, 3,513-516.
DOI URL PMID |
[39] |
Johnson BR, Tsutsui ND (2011) Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genomics, 12,164.
URL PMID |
[40] |
Judd TM, Teal PEA, Hernandez EJ, Choudhury T, Hunt JH (2015) Quantitative differences in nourishment affect caste-related physiology and development in the paper wasp Polistes metricus. PLoS ONE, 10,e0116199.
URL PMID |
[41] | Julian GE, Fewell JH, Gadau J, Johnson RA, Larrabee D (2002) Genetic determination of the queen caste in an ant hybrid zone. Proceedings of the National Academy of Sciences, USA, 99,8157-8160. |
[42] | Kaatz H, Eichmüller S, Kreissl S (1994) Stimulatory effect of octopamine on juvenile hormone biosynthesis in honey bees (Apis mellifera): Physiological and immunocytochemical evidence. Journal of Insect Physiology, 40,865-872. |
[43] |
Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature, 473,478-483.
DOI URL PMID |
[44] | Kamhi JF, Nunn K, Robson SKA, Traniello JFA (2015) Polymorphism and division of labour in a socially complex ant: Neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina. Proceedings of the Royal Society B: Biological Sciences, 282,20150704. |
[45] | Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RFA, Glastad KM, Hunt BG, Goodisman MAD, Hauser F, Grimmelikhuijzen CJP, Pinheiro DG, Nunes FMF, Soares MPM, Tanaka ÉD, Simões ZLP, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G (2015) Genomic signatures of evolutionary transitions from solitary to group living. Science, 348,1139-1143. |
[46] | Kocher SD, Pellissier L, Veller C, Purcell J, Nowak MA, Chapuisat M, Pierce NE (2014) Transitions in social complexity along elevational gradients reveal a combined impact of season length and development time on social evolution. Proceedings of the Royal Society B: Biological Sciences, 281,20140627. |
[47] | Korb J (2015) Juvenile hormone: A central regulator of termite caste polyphenism. Advances in Insect Physiology, 48,131-161. |
[48] |
Korb J, Belles X (2017) Juvenile hormone and hemimetabolan eusociality: A comparison of cockroaches with termites. Current Opinion in Insect Science, 22,109-116.
DOI URL PMID |
[49] | Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behavioral Ecology and Sociobiology, 56,89-95. |
[50] |
LeBoeuf AC, Benton R, Keller L (2013) The molecular basis of social behavior: Models, methods and advances. Current Opinion in Neurobiology, 23,3-10.
DOI URL PMID |
[51] |
Li BB, Hou L, Zhu D, Xu XL, An SH, Wang XH (2018) Identification and caste-dependent expression patterns of DNA methylation associated genes in Bombus terrestris. Scientific Reports, 8,2332.
DOI URL PMID |
[52] | Lucas C, Sokolowski MB (2009) Molecular basis for changes in behavioral state in ant social behaviors. Proceedings of the National Academy of Sciences, USA, 106,6351-6356. |
[53] |
Marco Antonio DS, Guidugli-Lazzarini KR, do Nascimento AM, Simões ZLP, Hartfelder K (2008) RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Naturwissenschaften, 95,953-961.
URL PMID |
[54] | Marshall H, Lonsdale ZN, Mallon EB (2019) Methylation and gene expression differences between reproductive and sterile bumblebee workers. Evolution Letters, 3,485-499. |
[55] |
Masuoka Y, Yaguchi H, Toga K, Shigenobu S, Maekawa K (2018) TGF β signaling related genes are involved in hormonal mediation during termite soldier differentiation. PLoS Genetics, 14,e1007338.
URL PMID |
[56] | Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proceedings of the National Academy of Sciences, USA, 107,12963-12968. |
[57] |
Mizunami M, Yamagata N, Nishino H (2010) Alarm pheromone processing in the ant brain: An evolutionary perspective. Frontiers in Behavioral Neuroscience, 4,28.
URL PMID |
[58] |
Monastirioti M (1999) Biogenic amine systems in the fruit fly Drosophila melanogaster. Microscopy Research and Technique, 45,106-121.
URL PMID |
[59] |
Mott CM, Breed MD (2012) Insulin modifies honeybee worker behavior. Insects, 3,1084-1092.
URL PMID |
[60] |
Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology, 5,e62.
URL PMID |
[61] | Norman VC, Hughes WOH (2016) Behavioural effects of juvenile hormone and their influence on division of labour in leaf-cutting ant societies. Journal of Experimental Biology, 219,8-11. |
[62] | Nouvian M, Mandal S, Jamme C, Claudianos C, d’Ettorre P, Reinhard J, Barron AB, Giurfa M (2018) Cooperative defence operates by social modulation of biogenic amine levels in the honey bee brain. Proceedings of the Royal Society B: Biological Sciences, 285,20172653. |
[63] | Page RE, Erickson EH (1988) Reproduction by worker honey bees (Apis mellifera L.). Behavioral Ecology and Sociobiology, 23,117-126. |
[64] |
Pearcy M, Aron S, Doums C, Keller L (2004) Conditional use of sex and parthenogenesis for worker and queen production in ants. Science, 306,1780-1783.
DOI URL PMID |
[65] |
Rehan SM, Berens AJ, Toth AL (2014) At the brink of eusociality: Transcriptomic correlates of worker behaviour in a small carpenter bee. BMC Evolutionary Biology, 14,260.
URL PMID |
[66] |
Reim T, Scheiner R (2014) Division of labour in honey bees: Age- and task-related changes in the expression of octopamine receptor genes. Insect Molecular Biology, 23,833-841.
DOI URL PMID |
[67] |
Robinson GE (1992) Regulation of division of labor in insect societies. Annual Review of Entomology, 37,637-665.
URL PMID |
[68] | Robinson GE, Page RE (1988) Genetic determination of guarding and undertaking in honey-bee colonies. Nature, 333,356-358. |
[69] |
Scheiner R, Baumann A, Blenau W (2006) Aminergic control and modulation of honeybee behaviour. Current Neuropharmacology, 4,259-276.
DOI URL PMID |
[70] |
Schulz DJ, Sullivan JP, Robinson GE (2002) Juvenile hormone and octopamine in the regulation of division of labor in honey bee colonies. Hormones and Behavior, 42,222-231.
URL PMID |
[71] |
Schwander T, Humbert JY, Brent CS, Cahan SH, Chapuis L, Renai E, Keller L (2008) Maternal effect on female caste determination in a social insect. Current Biology, 18,265-269.
URL PMID |
[72] | Sheehan MJ, Botero CA, Hendry TA, Sedio BE, Jandt JM, Weiner S, Toth AL, Tibbetts EA (2015) Different axes of environmental variation explain the presence vs. extent of cooperative nest founding associations in Polistes paper wasps. Ecology Letters, 18,1057-1067. |
[73] |
Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, Ray A, Zwiebel LJ, Bonasio R, Reinberg D, Liebig J, Berǵer SL (2016) Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science, 351,aac6633.
DOI URL PMID |
[74] |
Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M, Roux J, Nygaard S, Glastad KM, Hagen DE, Viljakainen L, Reese JT, Hunt BG, Graur D, Elhaik E, Kriventseva EV, Wen J, Parker BJ, Cash E, Privman E, Childers CP, Muñoz-Torres MC, Boomsma JJ, Bornberg-Bauer E, Currie CR, Elsik CG, Suen G, Goodisman MAD, Keller L, Liebig J, Rawls A, Reinberg D, Smith CD, Smith CR, Tsutsui N, Wurm Y, Zdobnov EM, Berger SL, Gadau J (2013) Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Research, 23,1235-1247.
DOI URL PMID |
[75] | Slessor KN, Kaminski LA, King GGS, Borden JH, Winston ML (1988) Semiochemical basis of the retinue response to queen honey bees. Nature, 332,354-356. |
[76] |
Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nature Reviews Genetics, 9,735-748.
DOI URL PMID |
[77] |
Steller MM, Kambhampati S, Caragea D (2010) Comparative analysis of expressed sequence tags from three castes and two life stages of the termite Reticulitermes flavipes. BMC Genomics, 11,463.
URL PMID |
[78] |
Stern DL, Foster WA (1996) The evolution of soldiers in aphids. Biological Reviews, 71,27-79.
URL PMID |
[79] |
Sullivan JP, Jassim O, Fahrbach SE, Robinson GE (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Hormones and Behavior, 37,1-14.
DOI URL PMID |
[80] |
Sumner S (2014) The importance of genomic novelty in social evolution. Molecular Ecology, 23,26-28.
URL PMID |
[81] |
Szczuka A, Korczyńska J, Wnuk A, Symonowicz B, Gonzalez-Szwacka A, Mazurkiewicz P, Kostowski W, Godzińska EJ (2013) The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiologiae Experimentalis, 73,495-520.
URL PMID |
[82] |
Tarver MR, Florane CB, Zhang DH, Grimm C, Lax AR (2012) Methoprene and temperature effects on caste differentiation and protein composition in the Formosan subterranean termite, Coptotermes formosanus. Journal of Insect Science, 12,18.
DOI URL PMID |
[83] |
Terrapon N, Li C, Robertson HM, Ji L, Meng XH, Booth W, Chen ZS, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu HF, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard JA, Pan HL, Reese JT, Scharf ME, Sun FM, Vogel H, Xiao J, Yang W, Yang ZK, Yang ZQ, Zhou JJ, Zhu JW, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang GJ, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nature Communications, 5,3636.
DOI URL PMID |
[84] | Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. Journal of Experimental Biology, 208,4641-4649. |
[85] |
Toth AL, Rehan SM (2017) Molecular evolution of insect sociality: An eco-evo-devo perspective. Annual Review of Entomology, 62,419-442.
URL PMID |
[86] |
Toth AL, Robinson GE (2007) Evo-devo and the evolution of social behavior. Trends in Genetics, 23,334-341.
URL PMID |
[87] | Trible W, Kronauer DJC (2017) Caste development and evolution in ants: It’s all about size. Journal of Experimental Biology, 220,53-62. |
[88] | Wada-Katsumata A, Yamaoka R, Aonuma H (2011) Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. Journal of Experimental Biology, 214,1707-1713. |
[89] |
Watanabe D, Gotoh H, Miura T, Maekawa K (2014) Social interactions affecting caste development through physiological actions in termites. Frontiers in Physiology, 5,127.
DOI URL PMID |
[90] |
Weiner SA, Toth AL (2012) Epigenetics in social insects: A new direction for understanding the evolution of castes. Genetics Research International, 2012, 609810.
DOI URL PMID |
[91] | Weitekamp CA, Libbrecht R, Keller L (2017) Genetics and evolution of social behavior in insects. Annual Review of Genetics, 51,219-239. |
[92] |
Wheeler D (1996) The role of nourishment in oogenesis. Annual Review of Entomology, 41,407-431.
URL PMID |
[93] |
Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science, 302,296-299.
DOI URL PMID |
[94] | Wiernasz DC, Cole BJ (2010) Patriline shifting leads to apparent genetic caste determination in harvester ants. Proceedings of the National Academy of Sciences, USA, 107,12958-12962. |
[95] | Wilson EO (1971) The Insect Societies. Harvard University Press, Cambridge. |
[96] |
Wilson EO (1985) The sociogenesis of insect colonies. Science, 228,1489-1495.
URL PMID |
[97] | Wilson EO (1987) Causes of ecological success: The case of the ants. Journal of Animal Ecology, 56,1-9. |
[98] | Wilson EO, Hölldobler B (2005) Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences, USA, 102,13367-13371. |
[99] |
Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E (2013) Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biology and Evolution, 5,439-455.
URL PMID |
[100] | Woodard SH, Bloch GM, Band MR, Robinson GE (2014) Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris). Proceedings of the Royal Society B: Biological Sciences, 281,20132419. |
[101] |
Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annual Review of Entomology, 51,1-24.
URL PMID |
[102] |
Wu T, Dhami GK, Thompson GJ (2018) Soldier-biased gene expression in a subterranean termite implies functional specialization of the defensive caste. Evolution & Development, 20,3-16.
URL PMID |
[103] | Zayed A, Kent CF (2015) Genomics, physiology and behaviour of social insects. Advances in Insect Physiology, 48,1-363. |
[1] | 罗韶凡, 蒋凯, 黄卫昌. 植物花距表型趋同进化和发育机制多样化的研究进展[J]. 生物多样性, 2023, 31(11): 23249-. |
[2] | 焦振彬, 罗毅波. 群体表型性状研究揭示环境与遗传因素对霍山石斛表型及物种分类的影响[J]. 生物多样性, 2021, 29(8): 1073-1086. |
[3] | 陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声. 格氏栲天然林林窗植物物种多样性与系统发育多样性[J]. 生物多样性, 2021, 29(4): 439-448. |
[4] | 赵金丽, 马友鑫, 朱华, 李红梅, 刘文俊, 李增加. 云南省南部山地7种主要入侵植物沿公路两侧的扩散格局[J]. 生物多样性, 2008, 16(4): 369-380. |
[5] | 方精云, 李意德, 朱彪, 刘国华, 周光益. 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J]. 生物多样性, 2004, 12(1): 29-43. |
[6] | 龚正达, 吴厚永, 段兴德, 冯锡光, 张云智, 刘泉. 云南横断山区蚤类物种多样性的地理分布趋势与重要环境因素的关系[J]. 生物多样性, 2001, 09(4): 319-328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn