生物多样性 ›› 2025, Vol. 33 ›› Issue (1): 24283. DOI: 10.17520/biods.2024283 cstr: 32101.14.biods.2024283
收稿日期:
2024-07-01
接受日期:
2024-12-10
出版日期:
2025-01-20
发布日期:
2025-01-19
通讯作者:
* E-mail: 基金资助:
Ruoyue Li, Xiaochao Yang(), Zhanqing Hao, Shihong Jia*(
)(
)
Received:
2024-07-01
Accepted:
2024-12-10
Online:
2025-01-20
Published:
2025-01-19
Contact:
* E-mail: Supported by:
摘要:
近年来, 高温热浪等极端天气事件频发。2022年, 我国出现大范围持续高温天气, 综合强度为1961年有完整气象观测记录以来最强。高温热浪事件不仅直接影响植物生长, 而且可能通过改变虫食强度间接影响植物命运。本研究聚焦西北工业大学校园内常见的11种木本植物, 测量了97个个体共计2,358片叶片受高温热浪和虫食的影响强度, 及叶面积、比叶面积、叶干物质含量与叶厚4种叶功能性状。研究对比了高温热浪和虫食作用强度在不同树种之间的差异, 以探究各作用强度随叶功能性状的变化规律, 以及高温热浪和虫食作用强度之间的关系。研究发现: (1)日灼损伤频度、虫食率与虫食频度3个指标在物种之间存在显著差异。(2)日灼损伤频度与叶面积呈显著负相关关系, 与叶厚和叶干物质含量呈显著正相关关系; 虫食率和虫食频度均与叶干物质含量呈显著正相关关系, 与叶厚呈显著(或近显著)负相关关系, 虫食频度还与叶面积呈显著正相关关系。(3)叶片的虫食频度与日灼损伤频度之间存在显著负相关关系。本研究对于揭示极端气候下植物的响应与适应, 以及耐受高温热浪或虫食的园林树种选育具有一定参考价值。
李若月, 杨小超, 郝占庆, 贾仕宏 (2025) 高温热浪和虫食对校园植物的作用强度及其与叶功能性状的关系. 生物多样性, 33, 24283. DOI: 10.17520/biods.2024283.
Ruoyue Li, Xiaochao Yang, Zhanqing Hao, Shihong Jia (2025) The intensity of heat waves and insect herbivory on campus plants and their relationship with leaf functional traits. Biodiversity Science, 33, 24283. DOI: 10.17520/biods.2024283.
物种 Species | 科 Family | 生长型 Growth form | 采集株数 Number of samples |
---|---|---|---|
日本晚樱 Prunus serrulata var. lannesiana | 蔷薇科 Rosaceae | 乔木 Tree | 10 |
紫叶李 Prunus cerasifera ‘Atropurpurea’ | 蔷薇科 Rosaceae | 乔木 Tree | 9 |
长柄七叶树 Aesculus assamica | 无患子科 Sapindaceae | 乔木 Tree | 10 |
全缘叶栾树 Koelreuteria bipinnata var. integrifoliola | 无患子科 Sapindaceae | 乔木 Tree | 9 |
银杏 Ginkgo biloba | 银杏科 Ginkgoaceae | 乔木 Tree | 10 |
女贞 Ligustrum lucidum | 木樨科 Oleaceae | 乔木 Tree | 9 |
桃 Prunus persica | 蔷薇科 Rosaceae | 灌木 Shrub | 8 |
紫丁香 Syringa oblata | 木樨科 Oleaceae | 灌木 Shrub | 7 |
紫薇 Lagerstroemia indica | 千屈菜科 Lythraceae | 灌木 Shrub | 7 |
石榴 Punica granatum | 千屈菜科 Lythraceae | 灌木 Shrub | 10 |
木槿 Hibiscus syriacus | 锦葵科 Malvaceae | 灌木 Shrub | 8 |
表1 研究选取的树种及其主要信息
Table 1 Tree species selected for the study and their key information
物种 Species | 科 Family | 生长型 Growth form | 采集株数 Number of samples |
---|---|---|---|
日本晚樱 Prunus serrulata var. lannesiana | 蔷薇科 Rosaceae | 乔木 Tree | 10 |
紫叶李 Prunus cerasifera ‘Atropurpurea’ | 蔷薇科 Rosaceae | 乔木 Tree | 9 |
长柄七叶树 Aesculus assamica | 无患子科 Sapindaceae | 乔木 Tree | 10 |
全缘叶栾树 Koelreuteria bipinnata var. integrifoliola | 无患子科 Sapindaceae | 乔木 Tree | 9 |
银杏 Ginkgo biloba | 银杏科 Ginkgoaceae | 乔木 Tree | 10 |
女贞 Ligustrum lucidum | 木樨科 Oleaceae | 乔木 Tree | 9 |
桃 Prunus persica | 蔷薇科 Rosaceae | 灌木 Shrub | 8 |
紫丁香 Syringa oblata | 木樨科 Oleaceae | 灌木 Shrub | 7 |
紫薇 Lagerstroemia indica | 千屈菜科 Lythraceae | 灌木 Shrub | 7 |
石榴 Punica granatum | 千屈菜科 Lythraceae | 灌木 Shrub | 10 |
木槿 Hibiscus syriacus | 锦葵科 Malvaceae | 灌木 Shrub | 8 |
图1 高温热浪(a)和虫食(b)作用在叶片上的表现示例。(a)日本晚樱叶片; (b)女贞叶片。
Fig. 1 Examples of manifestations of high-temperature heat wave (a) and herbivory (b) effects on leaves. (a) The leaf of Prunus serrulata var. lannesiana; (b) The leaf of Ligustrum lucidum.
图2 不同树种之间日灼损伤率(a)、日灼损伤频度(b)、虫食率(c)、虫食频度(d)的差异(平均值 ± 标准误)。LL: 女贞; PC: 紫叶李; HS: 木槿; GB: 银杏; PP: 桃; KB: 全缘叶栾树; AA: 长柄七叶树; LI: 紫薇; SO: 紫丁香; PG: 石榴; PS: 日本晚樱。
Fig. 2 Differences in the sunburn damage rate (a), sunburn damage frequency (b), herbivory rate (c), and herbivory frequency (d) among different tree species (mean ± SE). LL, Ligustrum lucidum; PC, Prunus cerasifera ‘Atropurpurea’; HS, Hibiscus syriacus; GB, Ginkgo biloba; PP, Prunus persica; KB, Koelreuteria bipinnata var. integrifoliola; AA, Aesculus assamica; LI, Lagerstroemia indica; SO, Syringa oblata; PG, Punica granatum; PS, Prunus serrulata var. lannesiana.
图3 叶功能性状与高温热浪、虫食作用强度的关系。采用广义线性混合效应模型进行拟合, 其中显著的结果用预测的平均值(线) ± 95%置信区间(灰色阴影)表示, 虚线表示接近显著水平(0.05 < P < 0.1); 不显著的结果仅展示观测值(点)。
Fig. 3 Relationships of leaf functional traits with heat waves and intensity of herbivory effects. Generalized linear mixed-effects models were fitted, where significant results are indicated by the predicted mean (line) ± 95% confidence intervals (shaded in gray), the dotted line represents a near-significant level, and non-significant results only show the observations (points).
图4 日灼损伤频度与虫食率(a)和虫食频度(b)之间的关系。采用广义线性混合效应模型进行拟合, 其中显著的结果用预测的平均值(线) ± 95%置信区间(灰色阴影)表示, 不显著的结果仅展示观测值(点)。
Fig. 4 Relationship between sunburn damage frequency and herbivory rate (a) and herbivory frequency (b). Generalized linear mixed-effects models were fitted, where significant results are indicated by the predicted mean (line) ± 95% confidence intervals (shaded in gray), and non-significant results only show the observed values (points).
[1] |
Abrams MD (1994) Genotypic and phenotypic variation as stress adaptations in temperate tree species: A review of several case studies. Tree Physiology, 14, 833-842.
PMID |
[2] |
Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817-844.
PMID |
[3] | Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[4] | Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9, 378-400. |
[5] | Cingolani AM, Posse G, Collantes MB (2005) Plant functional traits, herbivore selectivity and response to sheep grazing in patagonian steppe grasslands. Journal of Applied Ecology, 42, 50-59. |
[6] | Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305-335. |
[7] | Cui T, Sun LH, Zhang C, Li Y, Ye DX, Chen Y, Ai WX, Li W (2023) Characteristics and causes of extreme heat events in China in summer. Meteorological and Environmental Sciences, 46(3), 1-8. (in Chinese with English abstract) |
[崔童, 孙林海, 张驰, 李莹, 叶殿秀, 陈峪, 艾婉秀, 李威 (2023) 2022年夏季中国极端高温事件特点及成因初探. 气象与环境科学, 46(3), 1-8.] | |
[8] | Elger A, Willby NJ (2003) Leaf dry matter content as an integrative expression of plant palatability: The case of freshwater macrophytes. Functional Ecology, 17, 58-65. |
[9] | Garibaldi LA, Kitzberger T, Ruggiero A (2011) Latitudinal decrease in folivory within Nothofagus pumilio forests: Dual effect of climate on insect density and leaf traits. Global Ecology and Biogeography, 20, 609-619. |
[10] | Hu HY, Zheng Z, Wang J, Li ZP, Lin XB, Yang XD (2017) Study on insect herbivory of dominant plants and its influencing factors in tropical forest fragments. Journal of Central South University of Forestry & Technology, 37(10), 98-104. (in Chinese with English abstract) |
[胡鸿雁, 郑征, 王瑾, 李志鹏, 林小兵, 杨效东 (2017) 片段化热带森林优势植物叶虫食及其影响因素研究. 中南林业科技大学学报, 37(10), 98-104.] | |
[11] | IPCC (Intergovernmental Panel on Climate Change) (2021) Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/. (accessed on 2021-08-09) |
[12] | Jia SH, Yang XC, Castagneyrol B, Yang LSN, Yin QL, He CM, Yang ZC, Zhu YZ, Hao ZQ (2024) Neighbouring tree effects on leaf herbivory: Insect specialisation matters more than host plant leaf traits. Journal of Ecology, 112, 189-199. |
[13] |
Koricheva J, Larsson S, Haukioja E (1998) Insect performance on experimentally stressed woody plants: A meta-analysis. Annual Review of Entomology, 43, 195-216.
PMID |
[14] | Liu HW, Liu WD, Wang W, Chai J, Tao JP (2015) Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing. Acta Ecologica Sinica, 35, 4071-4080. (in Chinese with English abstract) |
[刘宏伟, 刘文丹, 王微, 柴捷, 陶建平 (2015) 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征. 生态学报, 35, 4071-4080.] | |
[15] | Liu ZG, Jing J, Li K, Cai YL (2013) Insect herbivory characteristic on leaves of plant species in the evergreen broad-leaved forests. Ecology and Environmental Sciences, 22, 78-84. (in Chinese with English abstract) |
[刘志国, 景军, 李恺, 蔡永立 (2013) 亚热带阔叶林植物叶片虫食特征研究. 生态环境学报, 22, 78-84.] | |
[16] | Luo YQ, Yu MS, Yu JJ, Zheng SL, Liu JJ, Yu MJ (2017) Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region. Chinese Journal of Plant Ecology, 41, 1033-1040. (in Chinese with English abstract) |
[骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚 (2017) 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响. 植物生态学报, 41, 1033-1040.]
DOI |
|
[17] |
McCluney KE, Sabo JL (2009) Water availability directly determines per capita consumption at two trophic levels. Ecology, 90, 1463-1469.
PMID |
[18] | Okajima Y, Taneda H, Noguchi K, Terashima I (2012) Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecological Research, 27, 333-346. |
[19] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[20] |
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675.
PMID |
[21] | Song H, Yu HY, Chen YT, Xu ZZ, Zhou GS (2016) Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China. Chinese Journal of Applied Ecology, 27, 1861-1869. (in Chinese with English abstract) |
[宋贺, 于鸿莹, 陈莹婷, 许振柱, 周广胜 (2016) 北京植物园不同功能型植物叶经济谱. 应用生态学报, 27, 1861-1869.]
DOI |
|
[22] |
The Herbivory Variability Network (2023) Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science, 382, 679-683.
DOI PMID |
[23] | Tsukaya H (2005) Leaf shape: Genetic controls and environmental factors. The International Journal of Developmental Biology, 49, 547-555. |
[24] | Wang XF, Gao WQ, Liu JF, Ni YY, Jiang ZP (2015) Plant defensive strategies and environment-driven mechanisms. Chinese Journal of Ecology, 34, 3542-3552. (in Chinese with English abstract) |
[王小菲, 高文强, 刘建锋, 倪妍妍, 江泽平 (2015) 植物防御策略及其环境驱动机制. 生态学杂志, 34, 3542-3552.] | |
[25] |
Werger MJA, Ellenbroek GA (1978) Leaf size and leaf consistence of a riverine forest formation along a climatic gradient. Oecologia, 34, 297-308.
DOI PMID |
[26] | Wetzel WC, Inouye BD, Hahn PG, Whitehead SR, Underwood N (2023) Variability in plant-herbivore interactions. Annual Review of Ecology, Evolution, and Systematics, 54, 451-474. |
[27] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017) Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[28] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee TL, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[29] | Xiao JH, Wu KM, Yan B, Gan HH, Gan HS (2013) The analysis of impact and response measures of extreme heat and drought on garden plants in Xinyang City. Journal of Henan Forestry Science and Technology, 33(4), 37-40, 57. (in Chinese with English abstract) |
[萧建华, 吴孔明, 晏波, 甘华华, 甘海珊 (2013) 极端高温干旱对园林植物的影响及对策研究. 河南林业科技, 33(4), 37-40, 57.] | |
[30] | Yang YK, Wang YP, Yang H, Zhang H, Wang YH (2022) Changes of leaf structure and physiological indexes during senescence of ginseng leaves. Plant Physiology Journal, 58, 393-401. (in Chinese with English abstract) |
[杨玉坤, 王英平, 杨鹤, 张浩, 王轶晗 (2022) 人参叶片衰老过程中叶片结构及生理指标变化. 植物生理学报, 58, 393-401.] | |
[31] | Ying YX, Huang HY, Wu ZB, Huang P, Hu YL (2025) Effects of leaf traits on interspecific differences of leaf herbivory characteristics in subtropical evergreen broad-leaf forest. Chinese Journal of Applied and Environmental Biology, 31, 53-62. (in Chinese with English abstract) |
[应宇馨, 黄恒宇, 巫智斌, 黄佩, 胡亚林 (2025) 亚热带常绿阔叶林优势植物叶性状对叶片虫食特征种间差异的影响. 应用与环境生物学报, 31, 53-62.] | |
[32] | Zhang HP, Ning QR, Li Q, Jin Y, Cao Y, Bakpa EP, Zhao H, Song J, Ye PC, Wen Y, Song LJ, Liu H (2024) Contrasting heat tolerance of evergreen and deciduous urban woody species during heat waves. Functional Ecology, 38, 1649-1660. |
[33] | Zhang JH, Gao MY, Liu XX (2008) Damage of high temperature in summer to the gardening plants and corresponding measures for prevention. Shaanxi Forest Science and Technology, 36(2), 46-49. (in Chinese with English abstract) |
[张金环, 高梦莹, 刘晓霞 (2008) 夏季高温对园林植物的危害及预防措施. 陕西林业科技, 36(2), 46-49.] | |
[34] | Zhou YY, Lin H (2023) Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients. Chinese Journal of Plant Ecology, 47, 733-744. (in Chinese with English abstract) |
[周莹莹, 林华 (2023) 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势. 植物生态学报, 47, 733-744.]
DOI |
[1] | 谭晓丹, 张鹏, 朱思睿, 刘向, 周淑荣, 刘木. 青藏高原高寒草甸灌丛化对圆穗蓼昆虫植食作用的影响[J]. 生物多样性, 2024, 32(1): 23417-. |
[2] | 孙尧初, 潘远飞, 刘木, 潘晓云. 专食性-广食性天敌比例影响入侵植物喜旱莲子草生长防御策略[J]. 生物多样性, 2023, 31(4): 22632-. |
[3] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[4] | 王寅, 王健铭, 曲梦君, 李景文. 干旱内陆河流域植物群落构建过程及其关键驱动因素[J]. 生物多样性, 2022, 30(2): 21419-. |
[5] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[6] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[7] | 余文生, 郭耀霖, 江佳佳, 孙可可, 鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[8] | 蒋林惠, 罗琌, 肖正高, 李大明, 陈小云, 刘满强, 胡锋. 长期施肥对水稻生长和抗虫性的影响: 解析土壤生物的贡献[J]. 生物多样性, 2016, 24(8): 907-915. |
[9] | 马丁, 鞠瑞亭, 李博. 土著昆虫素毒蛾对入侵植物互花米草地理种群的选择性[J]. 生物多样性, 2015, 23(1): 101-108. |
[10] | 尧婷婷, 孟婷婷, 倪健, 阎顺, 冯晓华, 王国宏. 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探[J]. 生物多样性, 2010, 18(2): 188-197. |
[11] | 王宏伟, 蔡永立, 李恺, 江红, 田玉鹏. 浙江天童常绿阔叶林中11种常绿乔灌木叶片虫食状分析[J]. 生物多样性, 2006, 14(2): 145-151. |
[12] | 于晓东, 周红章, 罗天宏. 昆虫与栎树的相互关系及其对栎林更新的影响[J]. 生物多样性, 2002, 10(2): 225-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn