生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 907-915. DOI: 10.17520/biods.2016100
蒋林惠1, 罗琌1, 肖正高1, 李大明2, 陈小云1, 刘满强1,*(), 胡锋1
收稿日期:
2016-04-08
接受日期:
2016-05-19
出版日期:
2016-08-20
发布日期:
2016-09-02
通讯作者:
刘满强
基金资助:
Linhui Jiang1, Ling Luo1, Zhenggao Xiao1, Daming Li2, Xiaoyun Chen1, Manqiang Liu1,*(), Feng Hu1
Received:
2016-04-08
Accepted:
2016-05-19
Online:
2016-08-20
Published:
2016-09-02
Contact:
Liu Manqiang
摘要:
合理施肥对保障土壤质量和粮食安全具有重要作用。有机肥促进土壤生物群落的发展已被认为是其优于化肥的重要方面, 然而有机肥影响下的土壤生物群落对作物生长的贡献却了解甚少。了解土壤生物因素对作物抗虫性的贡献不仅可以揭示施肥影响土壤功能的生物调控机制, 而且有助于制定土壤-作物的综合管理措施。本研究采集长期施用有机肥和化肥的水稻土, 通过制备灭活与否的土壤悬液, 在砂培条件下探究土壤生物群落对水稻生长及其抗虫性的影响。结果显示, 土壤生物群落和施肥措施均极显著地影响了土壤养分含量(P < 0.01)。土壤生物的存在降低了土壤铵态氮含量、水稻生物量、茎叶全氮含量以及褐飞虱(Nilaparvata lugens)生物量; 增加了土壤硝态氮含量、水稻的根冠比及水稻根系全氮、可溶性糖以及酚类含量(P < 0.05); 同时, 有机肥处理的土壤生物群落还能够促进水稻茎叶可溶性糖和酚类的合成。接入褐飞虱后, 土壤生物群落的存在显著降低了水稻整体的全氮含量, 促进了酚类的合成(P < 0.05)。研究结果表明, 土壤生物群落, 尤其是有机肥处理的土壤生物群落, 主要通过改变水稻养分向地下部的分配格局、增加根冠比、促进防御性代谢物质(如酚类)的合成来提高水稻地上部对害虫的 抗性。
蒋林惠, 罗琌, 肖正高, 李大明, 陈小云, 刘满强, 胡锋 (2016) 长期施肥对水稻生长和抗虫性的影响: 解析土壤生物的贡献. 生物多样性, 24, 907-915. DOI: 10.17520/biods.2016100.
Linhui Jiang, Ling Luo, Zhenggao Xiao, Daming Li, Xiaoyun Chen, Manqiang Liu, Feng Hu (2016) Effects of soil biota influenced by long-term organic and chemical fertilizers on rice growth and resistance to insects. Biodiversity Science, 24, 907-915. DOI: 10.17520/biods.2016100.
对照 Non-sterilized | 灭活 Sterilized | ||||
---|---|---|---|---|---|
化肥 Chemical fertilizer | 有机肥 Organic fertilizer | 化肥 Chemical fertilizer | 有机肥 Organic fertilizer | ||
铵态氮 NH4+-N (mg/kg) | 4.34 ± 0.73 | 2.19 ± 0.53 | 18.36 ± 0.63 | 27.35 ± 0.38 | |
硝态氮 NO3--N (mg/kg) | 75.97 ± 9.73 | 147.13 ± 3.53 | 73.12 ± 3.65 | 143.23 ± 2.65 | |
可溶性有机碳 DOC (mg/kg) | 43.86 ± 11.90 | 34.27 ± 5.56 | 712.86 ± 4.71 | 1,074.73 ± 21.17 | |
速效磷 AP (mg/kg) | 135.34 ± 1.26 | 101.01 ± 0.68 | 21.88 ± 0.00 | 10.02 ± 0.39 | |
速效钾 AK (mg/kg) | 21.03 ± 0.00 | 34.96 ± 1.51 | 38.68 ± 1.38 | 67.00 ± 2.57 | |
pH (H2O) | 6.01 ± 0.21 | 6.25 ± 0.26 | 5.77 ± 0.22 | 5.93 ± 0.23 |
表1 初始土壤及灭活后土壤的理化性质(平均值±标准差, n = 4)
Table 1 Physicochemical properties of original and sterilized soils (mean ± SD, n = 4)
对照 Non-sterilized | 灭活 Sterilized | ||||
---|---|---|---|---|---|
化肥 Chemical fertilizer | 有机肥 Organic fertilizer | 化肥 Chemical fertilizer | 有机肥 Organic fertilizer | ||
铵态氮 NH4+-N (mg/kg) | 4.34 ± 0.73 | 2.19 ± 0.53 | 18.36 ± 0.63 | 27.35 ± 0.38 | |
硝态氮 NO3--N (mg/kg) | 75.97 ± 9.73 | 147.13 ± 3.53 | 73.12 ± 3.65 | 143.23 ± 2.65 | |
可溶性有机碳 DOC (mg/kg) | 43.86 ± 11.90 | 34.27 ± 5.56 | 712.86 ± 4.71 | 1,074.73 ± 21.17 | |
速效磷 AP (mg/kg) | 135.34 ± 1.26 | 101.01 ± 0.68 | 21.88 ± 0.00 | 10.02 ± 0.39 | |
速效钾 AK (mg/kg) | 21.03 ± 0.00 | 34.96 ± 1.51 | 38.68 ± 1.38 | 67.00 ± 2.57 | |
pH (H2O) | 6.01 ± 0.21 | 6.25 ± 0.26 | 5.77 ± 0.22 | 5.93 ± 0.23 |
自由度 | 铵态氮 | 硝态氮 | 可溶性有机碳 | pH | 茎叶重 | 根系重 | 根冠比 | |
---|---|---|---|---|---|---|---|---|
df | NH4+-N | NO3--N | DOC | (H2O) | Shoot mass | Root mass | R/S ratio | |
灭活 Sterilization (S) | 1 | 427.12** | 62.10** | 108.76** | 60.98** | 151.95** | 47.66** | 28.22** |
施肥 Fertilization (F) | 1 | 11.48** | 16.70** | 22.65** | 27.48** | 9.28** | 0.10NS | 1.24NS |
飞虱 Planthopper (P) | 1 | 2.08NS | 7.89** | 0.05NS | 0.07NS | 210.59** | 10.66** | 101.71** |
灭活×施肥 Sterilization × Fertilization (S × F) | 1 | 7.16* | 0.28NS | 11.46** | 0.94NS | 9.44** | 3.77NS | 8.18** |
灭活×飞虱 Sterilization × Planthopper (S × P) | 1 | 0.25NS | 3.60NS | 0.17NS | 6.05* | 20.62** | 2.39NS | 0.30NS |
施肥×飞虱 Fertilization × Planthopper (F × P) | 1 | 1.13NS | 2.51NS | 0.60NS | 0.17NS | 1.89NS | 5.06* | 1.51NS |
灭活×施肥×飞虱 Sterilization × Fertilization × Planthopper (S × F × P) | 1 | 0.19NS | 1.66NS | 1.52NS | 1.41NS | 1.99NS | 2.53NS | 2.74NS |
Error | 24 |
表2 土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对土壤铵态氮、硝态氮、可溶性有机碳、pH、茎叶重、根系重和根冠比影响的方差分析结果
Table 2 ANOVA results showing the effects of soil biological factor (non-sterilized vs. sterilized), fertilization management (chemical vs. organic fertilizer) and brown planthopper (with vs. without planthoppers) on content of soil NH4+-N, NO3--N, dissolved organic carbon (DOC), pH, shoot mass, root mass, R/S ratio.
自由度 | 铵态氮 | 硝态氮 | 可溶性有机碳 | pH | 茎叶重 | 根系重 | 根冠比 | |
---|---|---|---|---|---|---|---|---|
df | NH4+-N | NO3--N | DOC | (H2O) | Shoot mass | Root mass | R/S ratio | |
灭活 Sterilization (S) | 1 | 427.12** | 62.10** | 108.76** | 60.98** | 151.95** | 47.66** | 28.22** |
施肥 Fertilization (F) | 1 | 11.48** | 16.70** | 22.65** | 27.48** | 9.28** | 0.10NS | 1.24NS |
飞虱 Planthopper (P) | 1 | 2.08NS | 7.89** | 0.05NS | 0.07NS | 210.59** | 10.66** | 101.71** |
灭活×施肥 Sterilization × Fertilization (S × F) | 1 | 7.16* | 0.28NS | 11.46** | 0.94NS | 9.44** | 3.77NS | 8.18** |
灭活×飞虱 Sterilization × Planthopper (S × P) | 1 | 0.25NS | 3.60NS | 0.17NS | 6.05* | 20.62** | 2.39NS | 0.30NS |
施肥×飞虱 Fertilization × Planthopper (F × P) | 1 | 1.13NS | 2.51NS | 0.60NS | 0.17NS | 1.89NS | 5.06* | 1.51NS |
灭活×施肥×飞虱 Sterilization × Fertilization × Planthopper (S × F × P) | 1 | 0.19NS | 1.66NS | 1.52NS | 1.41NS | 1.99NS | 2.53NS | 2.74NS |
Error | 24 |
图1 土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对土壤铵态氮、硝态氮、可溶性有机碳和pH的影响。不同小写字母表示各处理间差异显著, P < 0.05。
Fig. 1 Effects of soil biological factor (non-sterilized vs. sterilized), fertilization management (chemical vs. organic fertilizer) and brown planthopper (with vs. without planthoppers) on the content of soil NH4+-N、NO3--N、DOC and pH. Different letters among the treatments mean significant differences, P < 0.05.
图2 土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对植株茎叶重、根系重和根冠比的影响。不同小写字母表示各处理间差异显著, P < 0.05。
Fig. 2 Effects of soil biological factor (non-sterilized vs. sterilized), fertilization management (chemical vs. organic fertilizer) and brown planthopper (with vs. without planthoppers) on shoot mass, root mass and root to shoot ratio. Different letters among the treatments mean significant differences, P < 0.05.
自由度 df | 茎叶氮 Shoot N | 根系氮 Root N | 茎叶糖 Shoot sugar | 根系糖 Root sugar | 茎叶酚 Shoot phenolic | 根系酚 Root phenolic | |
---|---|---|---|---|---|---|---|
灭活 Sterilization (S) | 1 | 151.95** | 35.50** | 9.56** | 39.27** | 20.41** | 15.22** |
施肥 Fertilization (F) | 1 | 9.28** | 27.93** | 31.76** | 0.39NS | 7.71* | 10.49** |
飞虱 Planthopper (P) | 1 | 210.59** | 72.93** | 83.24** | 2.73NS | 1.59NS | 0.57NS |
灭活×施肥 Sterilization × Fertilization (S × F) | 1 | 9.44** | 50.35** | 0.02NS | 0.023NS | 0.62NS | 10.82** |
灭活×飞虱 Sterilization × Planthopper (S × P) | 1 | 20.62** | 2.00NS | 11.45** | 0.42NS | 5.31* | 0.53NS |
施肥×飞虱 Fertilization × Planthopper (F × P) | 1 | 1.89NS | 5.42* | 3.18NS | 2.65NS | 0.30NS | 2.06NS |
灭活×施肥×飞虱 Sterilization × Fertilization × Planthopper (S × F × P) | 1 | 1.99NS | 6.18* | 0.06NS | 12.86** | 4.68* | 0.73NS |
Error | 24 |
表3 土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对植株茎叶和根系全氮、可溶性糖及总酚影响的方差分析结果
Table 3 ANOVA results showing the effects of soil biological factor (non-sterilized vs. sterilized), fertilization management (chemical vs. organic fertilizer) and brown planthopper (with vs. without planthoppers) on the content of nitrogen, soluble sugar, phenolic in shoot and root, respectively.
自由度 df | 茎叶氮 Shoot N | 根系氮 Root N | 茎叶糖 Shoot sugar | 根系糖 Root sugar | 茎叶酚 Shoot phenolic | 根系酚 Root phenolic | |
---|---|---|---|---|---|---|---|
灭活 Sterilization (S) | 1 | 151.95** | 35.50** | 9.56** | 39.27** | 20.41** | 15.22** |
施肥 Fertilization (F) | 1 | 9.28** | 27.93** | 31.76** | 0.39NS | 7.71* | 10.49** |
飞虱 Planthopper (P) | 1 | 210.59** | 72.93** | 83.24** | 2.73NS | 1.59NS | 0.57NS |
灭活×施肥 Sterilization × Fertilization (S × F) | 1 | 9.44** | 50.35** | 0.02NS | 0.023NS | 0.62NS | 10.82** |
灭活×飞虱 Sterilization × Planthopper (S × P) | 1 | 20.62** | 2.00NS | 11.45** | 0.42NS | 5.31* | 0.53NS |
施肥×飞虱 Fertilization × Planthopper (F × P) | 1 | 1.89NS | 5.42* | 3.18NS | 2.65NS | 0.30NS | 2.06NS |
灭活×施肥×飞虱 Sterilization × Fertilization × Planthopper (S × F × P) | 1 | 1.99NS | 6.18* | 0.06NS | 12.86** | 4.68* | 0.73NS |
Error | 24 |
图3 土壤生物因素(对照和灭活)、施肥因素(化肥和有机肥)及地上部害虫因素(接入和不接入褐飞虱)对植株茎叶全氮、根系全氮、茎叶可溶性糖、根系可溶性糖、茎叶总酚和根系总酚的影响。不同小写字母表示各处理间差异显著, P < 0.05。
Fig. 3 Effects of soil biological factor (non-sterilized vs. sterilized), fertilization management (chemical vs. organic fertilizer) and brown planthopper (with vs. without planthoppers) on the content of shoot total nitrogen, root total nitrogen, shoot soluble sugar, root soluble sugar, shoot phenolics and root phenolics. Different letters among the treatments mean significant differences, P < 0.05.
图4 土壤生物因素(对照和灭活)及施肥因素(化肥和有机肥)对褐飞虱生物量的影响。不同小写字母表示各处理间差异显著, P < 0.05。
Fig. 4 Effects of soil biological factor (non-sterilized vs. sterilized) and fertilization management (chemical vs. organic fertilizer) on planthopper mass. Different letters among the treatments mean significant differences, P < 0.05.
图5 植株代谢产物和土壤理化性质在土壤生物因素、施肥因素和地上部害虫因素影响下的主成分分析。□代表植株代谢产物和土壤理化性质指标, ●代表不同的处理。
Fig. 5 Principle component analysis (PCA) of plant and soil properties affected by soil biological factor, fertilization management and planthopper.□ plant metabolome and soil physicochemical property; ● different treatments.
[1] | Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875-877. |
[2] | Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research, 72, 203-211. |
[3] | Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 198, 264-273. |
[4] | Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360, 1-13. |
[5] | Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258-2268. |
[6] | Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[7] | Bardgett RD, Wardle D (2010) Biotic interactions in soil as drivers of ecosystem properties. In: Aboveground- Belowground Linkages, Biotic Interactions, Ecosystem Processes, and Global Change (eds Bardgett RD, Wardle D), pp.15-61. Oxford University Press, New York. |
[8] | Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486. |
[9] | Bissett A, Brown MV, Siciliano SD, Thrall PH (2013) Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters, 16, 128-139. |
[10] | Cohen MB, Alam SN, Medina EB, Bernal CC (1997) Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64: mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomologia Experimentalis et Applicata, 85, 221-229. |
[11] | D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell & Environment, 37, 813-826. |
[12] | Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. |
[13] | Erb M (2012) The role of roots in plant defence. In: Plant Defence: Biological Control (eds Mérillon JM, Ramawat KG), pp. 291-309. Springer Netherlands Press, Berlin. |
[14] | Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract) |
[傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.] | |
[15] | Gu YF, Zhang XP, Tu SH, Sun XF (2008) Effect of long-term fertilization on nitrification and nitrobacteria community in a purple paddy soil under rice-wheat rotations. Acta Ecologica Sinica, 28, 2123-2130. (in Chinese with English abstract) |
[辜运富, 张小平, 涂仕华, 孙锡发 (2008) 长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响. 生态学报, 28, 2123-2130.] | |
[16] | Jiang T, Zhao JL, Cheng JJ, Xu S, Su W, Bao SW, Liu F (2011) Effects of rice varieties and nitrogen fertilizer application rates on the occurrence of the brown planthopper, Nilaparvata lugens under field conditions. Chinese Journal of Applied Entomology, 48, 1359-1368. (in Chinese with English abstract) |
[江涛, 赵俊玲, 程建军, 徐帅, 苏文, 包善微, 刘芳 (2011) 水稻品种与氮肥施用水平对田间褐飞虱发生的影响. 应用昆虫学报, 48, 1359-1368.] | |
[17] | Jiang ZG, Qin HN, Liu YN, Ji LQ, Ma KP (2015) Protecting biodiversity and promoting sustainable development: in memory of the releasing of Catalogue of Life China 2015 and China Biodiversity Red List on the International Day for Biological Diversity 2015. Biodiversity Science, 23, 433-434. (in Chinese) |
[蒋志刚, 覃海宁, 刘忆南, 纪力强, 马克平 (2015) 保护生物多样性, 促进可持续发展——纪念《中国生物物种名录》和《中国生物多样性红色名录》发布. 生物多样性, 23, 433-434.] | |
[18] | Kenmore PE (1980) Ecology and Outbreaks of a Tropical Insects Pest of the Green Revolution, the Rice Brown Planthopper, Nilaparvata lugens (Stal). PhD dissertation, University of California, Berkeley. |
[19] | Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils, 49, 723-733. |
[20] | Liu M, Bjørnlund L, Rønn R, Christensen S, Ekelund F (2012) Disturbance promotes non-indigenous bacterial invasion in soil microcosms: analysis of the roles of resource availability and community structure. PLoS ONE, 7, e45306. |
[21] | Liu MQ, Huang JH, Chen XY, Wang F, Ge C, Su Y, Shao B, Tang Y, Li HX, Hu F (2009) Aboveground herbivory by the brown planthopper (Nilaparvata lugens) affects soil nematode communities under different rice varieties. Biodiversity Science, 17, 431-439. (in Chinese with English abstract) |
[刘满强, 黄菁华, 陈小云, 王峰, 葛成, 苏昱, 邵波, 汤英, 李辉信, 胡锋 (2009) 地上部植食者褐飞虱对不同水稻品种土壤线虫群落的影响. 生物多样性, 17, 431-439.] | |
[22] | Lu RK (2000) Analysis Method of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing. |
(in Chinese) [鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[23] | Martinuz A, Schouten A, Menjivar RD, Sikora RA (2012) Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biological Control, 62, 206-212. |
[24] | Megali L, Schlau B, Rasmann S (2015) Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 35, 1511-1519. |
[25] | Phelan PL, Mason JF, Stinner BR (1995) Soil-fertility management and host preference by European corn borer, Ostrinia nubilalis (Hübner), on Zea mays L.: a comparison of organic and conventional chemical farming. Agriculture, Ecosystems & Environment, 56, 1-8. |
[26] | Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Maron PA (2013) Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7, 1609-1619. |
[27] | Pineda A, Zheng SJ, van Loon JJA, Dicke M (2012) Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Plant Biology, 14, 83-90. |
[28] | Roger A, Getaz M, Rasmann S, Sanders IR (2013) Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference. Ecological Entomology, 38, 330-338. |
[29] | Senthil-Nathan S, Choi MY, Paik CH, Seo HY, Kalaivani K (2009) Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens, the brown planthopper. Ecotoxicology and Environmental Safety, 72, 1707-1713. |
[30] | Shavit R, Ofek-Lalzar M, Burdman S, Morin S (2013) Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Frontiers in Plant Science, 4, 1-12. |
[31] | Shi LL, Fu SL (2014) Review of soil biodiversity research: history, current status and future challenges. Chinese Science Bulletin, 59, 493-509. (in Chinese) |
[时雷雷, 傅声雷 (2014) 土壤生物多样性研究: 历史, 现状与挑战. 科学通报, 59, 493-509.] | |
[32] | Soler R, van der Putten WH, Harvey JA, Vet LE, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. Journal of Chemical Ecology, 38, 755-767. |
[33] | Su T, Xu HX, Han HL, Yang YJ, Wang GY, Zheng XS, Lü ZX (2014) Soil microbe quantities and enzyme activities in rhizosphere of different rice varieties fed by brown planthoppers. Chinese Journal of Rice Science, 28, 322-326. (in Chinese with English abstract) |
[苏婷, 徐红星, 韩海亮, 杨亚军, 王桂跃, 郑许松, 吕仲贤 (2014) 褐飞虱胁迫对不同抗性水稻品种根际土壤酶活性和微生物含量的影响. 中国水稻科学, 28, 322-326.] | |
[34] | Tang Y, Liu MQ, Wang F, Chen FJ, Shao B, Su Y, Ge C, Huang JH, Li HX, Hu F (2010) Herbivory by the brown planthopper (Nilaparvata lugens) affects rice seeding growth and belowground soil labile erganic carbon and nitrogen fractions. Acta Ecologica Sinica, 30, 2890-2898. (in Chinese with English abstract) |
[汤英, 刘满强, 王峰, 陈法军, 邵波, 苏昱, 葛成, 黄菁华, 李辉信, 胡锋 (2010) 褐飞虱对水稻苗期生长及地下部土壤活性碳氮的影响. 生态学报, 30, 2890-2898.] | |
[35] | Wang J, Zhu B, Zhang J, Müller C, Cai Z (2015) Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biology and Biochemistry, 91, 222-231. |
[36] | Zha Y, Wu XP, Zhang HM, Cai DX, Zhu P, Gao HJ (2015) Effects of long-term organic and inorganic fertilization on enhancing soil organic carbon and basic soil productivity in black soil. Scientia Agricultura Sinica, 48, 4649-4659. (in Chinese with English abstract) |
[查燕, 武雪萍, 张会民, 蔡典雄, 朱平, 高洪军 (2015) 长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 48, 4649-4659.] | |
[37] | Zhu Q, Riley WJ, Tang J, Koven CD (2016) Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences, 13, 341-363. |
[1] | 胡惠玲, 姚致远, 高世斌, 朱波. 紫色土线虫对长期不同施肥措施的响应[J]. 生物多样性, 2022, 30(12): 22189-. |
[2] | 余文生,郭耀霖,江佳佳,孙可可,鞠瑞亭. 土著昆虫素毒蛾在本地植物芦苇与入侵植物互花米草上的生活史[J]. 生物多样性, 2019, 27(4): 433-438. |
[3] | 马丁, 鞠瑞亭, 李博. 土著昆虫素毒蛾对入侵植物互花米草地理种群的选择性[J]. 生物多样性, 2015, 23(1): 101-108. |
[4] | 辜运富, 张小平, 涂仕华, Kristina Lindström. 长期定位施肥对石灰性紫色水稻土 古菌群落结构的影响[J]. 生物多样性, 2011, 19(3): 369-376. |
[5] | 刘满强, 黄菁华, 陈小云, 王峰, 葛成, 苏昱, 邵波, 汤英, 李辉信, 胡锋. 地上部植食者褐飞虱对不同水稻品种土壤线虫群落的影响[J]. 生物多样性, 2009, 17(5): 431-439. |
[6] | 李儒海, 强胜, 邱多生, 储秋华, 潘根兴. 长期不同施肥方式对稻油两熟制油菜田杂草群落多样性的影响[J]. 生物多样性, 2008, 16(2): 118-125. |
[7] | 冯伟, 潘根兴, 强胜, 李儒海, 韦继光. 长期不同施肥方式对稻油轮作田土壤杂草种子库多样性的影响[J]. 生物多样性, 2006, 14(6): 461-469. |
[8] | 王洪兴, 陈欣, 唐建军, 志水胜好. 释放后的转抗病虫基因作物对土壤生物群落的影响[J]. 生物多样性, 2002, 10(2): 232-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn