生物多样性 ›› 2021, Vol. 29 ›› Issue (6): 712-721. DOI: 10.17520/biods.2021056
所属专题: 传粉生物学
胡正艳1,2, 郑全晶1,2, 母其勇1,2, 杜志强1,2, 刘琳3, 星耀武1,*(), 韩廷申1,*()
收稿日期:
2021-02-09
接受日期:
2021-04-08
出版日期:
2021-06-20
发布日期:
2021-06-11
通讯作者:
星耀武,韩廷申
作者简介:
hantingshen@xtbg.ac.cn基金资助:
Zhengyan Hu1,2, Quanjing Zheng1,2, Qiyong Mu1,2, Zhiqiang Du1,2, Lin Liu3, Yaowu Xing1,*(), Ting-Shen Han1,*()
Received:
2021-02-09
Accepted:
2021-04-08
Online:
2021-06-20
Published:
2021-06-11
Contact:
Yaowu Xing,Ting-Shen Han
摘要:
高山植物的繁殖适应策略一直是进化生态学研究的热点, 但是目前仍缺乏对繁殖适应性状的量化研究。本研究以横断山特有十字花科植物高蔊菜(Rorippa elata)为研究材料, 结合野外同质园控制实验, 在居群水平探讨了其繁殖适应策略。结果表明, 高蔊菜的繁殖能力与纬度呈负相关, 而越冬存活率与纬度呈正相关。不同交配方式结实率的显著性差异分析表明, 高蔊菜具有混合交配系统, 其中自交为主型和中间型的株系各占45.5%和39.4%; 不同株系具有不同程度的繁殖保障现象, 自交为主型最高(0.163), 中间型最低(0.011)。本研究表明高蔊菜在居群水平的繁殖和存活之间存在沿纬度梯度的权衡变化, 以自交为主的混合交配系统为其提供不同程度的繁殖保障。
胡正艳, 郑全晶, 母其勇, 杜志强, 刘琳, 星耀武, 韩廷申 (2021) 不同纬度高蔊菜的交配系统和繁殖保障. 生物多样性, 29, 712-721. DOI: 10.17520/biods.2021056.
Zhengyan Hu, Quanjing Zheng, Qiyong Mu, Zhiqiang Du, Lin Liu, Yaowu Xing, Ting-Shen Han (2021) The mating system and reproductive assurance of Rorippa elata (Brassicaceae) across latitude. Biodiversity Science, 29, 712-721. DOI: 10.17520/biods.2021056.
图1 高蔊菜野外采样点及同质园位置。A: 高蔊菜野外采样点(蓝色点)及同质园位置(紫色星号标示); B: 高蔊菜野外居群照片; C: 同质园全景照及移栽的高蔊菜植株。
Fig. 1 Sample sites of Rorippa elata natural populations and the common garden. A, Sampled R. elata populations (blue dots) and the location of common garden (purple star); B, Photo for the natural population of R. elata; C, Common garden and transplanted seedlings of R. elata.
图4 高蔊菜开放授粉结实率(A)及越冬存活率(B)与纬度的相关性分析
Fig. 4 Correlation analysis of seed setting rate (open) (A) and over-winter survival rate (B) with latitude of Rorippa elatapopulations
图5 高蔊菜的交配系统类型。不同字母表示不同实验处理的结实率之间差异显著(P < 0.05)。
Fig. 5 Mating system type of Rorippa elata. Different letters indicate significant differences among seed setting rate of different experimental treatments (P < 0.05).
图6 不同类型交配系统的花粉限制分析。不同字母表示不同交配系统的花粉限制差异显著(P < 0.05)。
Fig. 6 Pollen limitation of different types mating system. Different letters indicate significant differences among mating system types of different pollen limitation (P < 0.05).
[1] |
Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology, 85,2408-2421.
DOI URL |
[2] | Barrett SCH (2014) Evolution of mating systems:Outcrossing versus selfing. In: The Princeton Guide to Evolution (eds Losos JB, Baum DA, Futuyma DJ, Hoekstra EH, Lenski RE, Moore AJ, Peichel GL, Schluter D, Whitlock MC), pp. 356-362. Princeton University Press, PrincetonThe Princeton Guide to Evolution (eds Losos JB,356-362. Princeton University Press, Princeton. |
[3] |
Barrett SCH, Harder LD (2017) The ecology of mating and its evolutionary consequences in seed plants. Annual Review of Ecology, Evolution, and Systematics, 48,135-157.
DOI URL |
[4] |
Bengtsson BO, Ceplitis A (2000) The balance between sexual and asexual reproduction in plants living in variable environments. Journal of Evolutionary Biology, 13,415-422.
DOI URL |
[5] |
Brys R, van Cauwenberghe J, Jacquemyn H (2016) The importance of autonomous selfing in preventing hybridization in three closely related plant species. Journal of Ecology, 104,601-610.
DOI URL |
[6] |
Busch JW, Delph LF (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109,553-562.
DOI URL |
[7] |
Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nature Reviews Genetics, 10,783-796.
DOI URL |
[8] |
Devaux C, Lande R, Porcher E (2014) Pollination ecology and inbreeding depression control individual flowering phenologies and mixed mating. Evolution, 68,3051-3065.
DOI URL |
[9] |
de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: New perspectives and opportunities. Heredity, 116,249-254.
DOI PMID |
[10] |
Ding WN, Ree RH, Spicer RA, Xing YW (2020) Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science, 369,578-581.
DOI URL |
[11] |
Elle E, Carney R (2003) Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). American Journal of Botany, 90,888-896.
DOI URL |
[12] | Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurka H, Wright SI (2009) Recent speciation associated with the evolution of selfing in Capsella. Proceedings of the National Academy of Sciences, USA, 106,5241-5245. |
[13] |
Friedman J (2020) The evolution of annual and perennial plant life histories: Ecological correlates and genetic mechanisms. Annual Review of Ecology, Evolution, and Systematics, 51,461-481.
DOI URL |
[14] |
Goodwillie C, Weber JJ (2018) The best of both worlds? A review of delayed selfing in flowering plants. American Journal of Botany, 105,641-655.
DOI PMID |
[15] |
Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36,47-79.
DOI URL |
[16] |
Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, Kalisz S, Moeller DA, Ree RH, Vallejo-Marin M, Winn AA (2010) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185,311-321.
DOI URL |
[17] |
Guo H, Weiner J, Mazer SJ, Zhao ZG, Du GZ, Li B (2012) Reproductive allometry in Pedicularis species changes with elevation . Journal of Ecology, 100,452-458.
DOI URL |
[18] | Hao N, Su X, Wu Q, Chang LB, Zhang SH, Sun K (2016) Size-dependent of Qinghai-Tibetan Plateau Viola tuberifera (Violaceae) bulbs allocation . Guihaia, 36,674-678. (in Chinese with English abstract) |
郝楠, 苏雪, 吴琼, 常立博, 张世虎, 孙坤 (2016) 青藏高原东缘块茎堇菜鳞茎分配的个体大小依赖性. 广西植物, 36,674-678.] | |
[19] |
Herlihy CR, Eckert CG (2002) Genetic cost of reproductive assurance in a self-fertilizing plant. Nature, 416,320-323.
DOI URL |
[20] |
Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature, 430,884-887.
PMID |
[21] | Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin. |
[22] | Körner C (2020) Plant adaptations to alpine environments. In: Encyclopedia of the World's Biomes (eds Goldstein MI, DellaSala DA), pp. 355-361. Elsevier, Amsterdam, |
[23] |
Layman NC, Fernando MTR, Herlihy CR, Busch JW (2017) Costs of selfing prevent the spread of a self-compatibility mutation that causes reproductive assurance. Evolution, 71,884-897.
DOI URL |
[24] | Lundgren MR, Des Marais DL (2020) Life history variation as a model for understanding trade-offs in plant-environment interactions. Current Biology, 30,R180-R189. |
[25] |
Miller GR, Geddes C (2004) Seed-setting by alpine gentian ( Gentiana nivalis L.) . Botanical Journal of Scotland, 56,85-91.
DOI URL |
[26] |
Moeller DA, Briscoe Runquist RD, Moe AM, Geber MA, Goodwillie C, Cheptou PO, Eckert CG, Elle E, Johnston MO, Kalisz S, Ree RH, Sargent RD, Vallejo-Marin M, Winn AA (2017) Global biogeography of mating system variation in seed plants. Ecology Letters, 20,375-384.
DOI PMID |
[27] |
Munoz F, Violle C, Cheptou PO (2016) CSR ecological strategies and plant mating systems: Outcrossing increases with competitiveness but stress-tolerance is related to mixed mating. Oikos, 125,1296-1303.
DOI URL |
[28] | Nasrallah JB (2017) Plant mating systems: Self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Current Opinion in Genetics & Development, 47,54-60. |
[29] |
Peng DL, Zhang ZQ, Niu Y, Yang Y, Song B, Sun H, Li ZM (2012) Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 20,286-299. (in Chinese with English abstract)
DOI URL |
彭德力, 张志强, 牛洋, 杨扬, 宋波, 孙航, 李志敏 (2012) 高山植物繁殖策略的研究进展. 生物多样性, 20,286-299.]
DOI |
|
[30] |
Peng DL, Zhang ZQ, Xu B, Li ZM, Sun H (2012) Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Botany, 122,65-73.
DOI URL |
[31] |
Peng DL, Ou XK, Xu B, Zhang ZQ, Niu Y, Li ZM, Sun H (2014) Plant sexual systems correlated with morphological traits: Reflecting reproductive strategies of alpine plants. Journal of Systematics and Evolution, 52,368-377.
DOI URL |
[32] | R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
[33] |
Sun H, Niu Y, Chen YS, Song B, Liu CQ, Peng DL, Chen JG, Yang Y (2014) Survival and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 52,378-396.
DOI URL |
[34] |
Sun H, Zhang JW, Deng T, Boufford DE (2017) Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Diversity, 39,161-166.
DOI URL |
[35] |
Sun SG, Guo YH, Gituru RW, Huang SQ (2005) Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Systematics and Evolution, 251,229-237.
DOI URL |
[36] |
Testolin R, Attorre F, Jiménez-Alfaro B (2020) Global distribution and bioclimatic characterization of alpine biomes. Ecography, 43,779-788.
DOI URL |
[37] |
Tong ZY, Wu LY, Huang SQ (2020) Reproductive strategies of animal-pollinated plants on high mountains: A review of studies from the “Third Pole”. Journal of Systematics and Evolution,doi:10.1111/jse.12680.
DOI |
[38] |
Wadgymar SM, Daws SC, Anderson JT (2017) Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evolution Letters, 1,26-39.
DOI PMID |
[39] |
Wang T, Zhao YT, Xu CY, Ciais P, Liu D, Yang H, Piao SL, Yao TD (2021) Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change, 11,219-225.
DOI URL |
[40] |
Wang XJ, Barrett SCH, Zhong L, Wu ZK, Li DZ, Wang H, Zhou W (2021) The genomic selfing syndrome accompanies the evolutionary breakdown of heterostyly. Molecular Biology and Evolution, 38,168-180.
DOI URL |
[41] |
Weiner J (2004) Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6,207-215.
DOI URL |
[42] |
Wenk EH, Falster DS (2015) Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 5,5521-5538.
DOI URL |
[43] |
Whitehead MR, Lanfear R, Mitchell RJ, Karron JD (2018) Plant mating systems often vary widely among populations. Frontiers in Ecology and Evolution, 6, doi:10.3389/fevo.2018.00038.
DOI |
[44] | Xiong YZ, Fang Q, Huang SQ (2013) Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB Plants, 5, plt037. |
[45] | Yu Q, Zhang YW, Guo YH (2008) Translation and elucidation of common terms in pollination biology. Journal of Systematics and Evolution, 46,96-102. (in Chinese with English abstract) |
予茜, 张彦文, 郭友好 (2008) 传粉生物学常用术语释译. 植物分类学报, 46,96-102.] | |
[46] |
Zhang C, An YM, Jäschke Y, Wang LL, Zhou ZL, Wang LP, Yang YP, Duan YW (2020) Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands. Chinese Journal of Plant Ecology, 44,1-21. (in Chinese with English abstract)
DOI URL |
张婵, 安宇梦, Jäschke Y, 王林林, 周知里, 王力平, 杨永平, 段元文 (2020) 青藏高原及周边高山地区的植物繁殖生态学研究进展. 植物生态学报, 44,1-21.]
DOI |
[1] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[2] | 杨锐, 侯姝彧, 张引, 赵智聪. 论建立中国自然保护兼用地的必要性和可行性[J]. 生物多样性, 2024, 32(4): 23454-. |
[3] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
[4] | 魏庐潞, 徐婷婷, 李媛媛, 艾喆, 马飞. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 22477-. |
[5] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[6] | 罗瑞, 陈娅, 张汉马. 芸薹属植物全基因组重测序研究进展[J]. 生物多样性, 2023, 31(10): 23237-. |
[7] | 肖钰, 王茜, 何梓晗, 李玲玲, 胡新生. 基于生物学物种定义探讨物种形成理论与验证的研究进展[J]. 生物多样性, 2022, 30(5): 21480-. |
[8] | 宋佳, 职铭阳, 陈强, 李玥莹, 吴隆坤, 农保选, 李丹婷, 逄洪波, 郑晓明. 水稻耐寒基因CTB4a的核苷酸多样性及区域适应性[J]. 生物多样性, 2022, 30(2): 21258-. |
[9] | 黄永江, 苏涛, 朱海, 贾林波, 胡瑾瑾, 纪运恒, 周浙昆. 横断山南段上新世的植被多样性与分布格局[J]. 生物多样性, 2022, 30(11): 22295-. |
[10] | 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿. 全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化[J]. 生物多样性, 2021, 29(6): 722-734. |
[11] | 李晟, William J. McShea, 王大军, 申小莉, 卜红亮, 官天培, 王放, 古晓东, 张晓峰, 廖灏泓. 西南山地红外相机监测网络建设进展[J]. 生物多样性, 2020, 28(9): 1049-1058. |
[12] | 胡文昭,赵骥民,张彦文. 二态混合交配系统的适合度优势及其维持机制研究进展[J]. 生物多样性, 2019, 27(4): 468-474. |
[13] | 王宇飞,苏红巧,赵鑫蕊,苏杨,罗敏. 基于保护地役权的自然保护地适应性管理方法探讨: 以钱江源国家公园体制试点区为例[J]. 生物多样性, 2019, 27(1): 88-96. |
[14] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[15] | 胡茜茜, 郑维超, 李佳琦, 李晟, 杨晗, 陈星, 官天培. 四姑娘山国家级自然保护区鸟兽多样性初步调查[J]. 生物多样性, 2018, 26(12): 1325-1331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn