生物多样性 ›› 2021, Vol. 29 ›› Issue (11): 1435-1446. DOI: 10.17520/biods.2021014
• 研究报告: 植物多样性 • 下一篇
朱杰1,2,3,4,5, 吴安驰1,2, 邹顺6, 熊鑫1, 刘世忠1, 褚国伟1, 张倩媚1, 刘菊秀1, 唐旭利1, 闫俊华1, 张德强1, 周国逸7,*()
收稿日期:
2021-01-12
接受日期:
2021-10-25
出版日期:
2021-11-20
发布日期:
2021-11-23
通讯作者:
周国逸
作者简介:
E-mail: gyzhou@scib.ac.cn基金资助:
Jie Zhu1,2,3,4,5, Anchi Wu1,2, Shun Zou6, Xin Xiong1, Shizhong Liu1, Guowei Chu1, Qianmei Zhang1, Juxiu Liu1, Xuli Tang1, Junhua Yan1, Deqiang Zhang1, Guoyi Zhou7,*()
Received:
2021-01-12
Accepted:
2021-10-25
Online:
2021-11-20
Published:
2021-11-23
Contact:
Guoyi Zhou
摘要:
生物多样性和生态系统功能的关系直接或间接地影响着生产力, 是生态学研究的关键问题。本研究旨在定量探讨亚热带自然林演替后期森林生态系统树木多样性与生物量或生产力的关系。本研究基于中国南亚热带长期永久性样地的群落调查数据以及地形和土壤养分数据, 分析了南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素。相关性分析结果表明, 物种多样性与生物量呈显著负相关, 与生产力呈显著正相关; 结构多样性与生物量呈显著正相关, 与生产力呈显著负相关。此外, 不同环境因子对多样性、生物量和生产力的影响具有显著差异, 其中土壤含水量对生产力有显著影响, 物种多样性指标与部分地形和土壤因子均有相关性, 而群落结构多样性指标与土壤因子的相关性更强。方差分解结果表明, 结构多样性对生物量和生产力的单独效应的解释率最大, 分别为35.39%和5.21%; 其次是结构多样性和物种多样性的共同效应, 对生物量和生产力的解释率分别为13.66%和3.53%; 地形和土壤因子的解释率较小。同时, 结构方程结果也表明, 结构多样性对生物量有较强的直接正影响; 生物量对生产力有强烈的直接负影响, 结构多样性通过增加生物量明显地减少了生产力; 土壤和地形因子主要是通过物种和结构多样性间接影响生物量和生产力。综上, 本研究认为在南亚热带森林演替顶极群落中, 群落结构复杂性和物种多样性的提高对促进群落生产力和生物量具有重要作用。
朱杰, 吴安驰, 邹顺, 熊鑫, 刘世忠, 褚国伟, 张倩媚, 刘菊秀, 唐旭利, 闫俊华, 张德强, 周国逸 (2021) 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素. 生物多样性, 29, 1435-1446. DOI: 10.17520/biods.2021014.
Jie Zhu, Anchi Wu, Shun Zou, Xin Xiong, Shizhong Liu, Guowei Chu, Qianmei Zhang, Juxiu Liu, Xuli Tang, Junhua Yan, Deqiang Zhang, Guoyi Zhou (2021) Relationships between tree diversity and biomass/productivity and their influence factors in a lower subtropical evergreen broad-leaved forest. Biodiversity Science, 29, 1435-1446. DOI: 10.17520/biods.2021014.
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 SD |
---|---|---|---|
物种丰富度 Species richness (R) | 6.00-21.50 | 12.86 | 3.69 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index (H') | 1.23-2.68 | 2.07 | 0.31 |
Simpson多样性指数 Simpson diversity index (D) | 0.62-0.91 | 0.82 | 0.06 |
Pielou均匀度指数 Pielou evenness index (E) | 0.59-0.98 | 0.82 | 0.08 |
胸高断面积标准偏差 Basal area standard deviation (SDba) | 14.83-4,696.75 | 333.41 | 678.16 |
胸高断面积变异系数 Basal area coefficient of variation (CVba) | 86.49-2,069.74 | 486.98 | 371.29 |
胸高断面积基尼系数 Basal area Gini coefficient (GCba) | 0.55-1.00 | 0.82 | 0.10 |
树高标准偏差 Height standard deviation (SDh) | 1.49-8.40 | 4.14 | 1.77 |
树高变异系数 Height coefficient of variation (CVh) | 28.73-147.37 | 79.32 | 30.73 |
树高基尼系数 Height Gini coefficient (GCh) | 0.18-0.54 | 0.35 | 0.08 |
坡度(南北) Slop degree (Northsouth) (SNS) (°) | 0.00-89.61 | 10.52 | 11.86 |
坡度(东西) Slop degree(Eastwest) (SEW) (°) | 4.72-39.00 | 26.79 | 5.78 |
相对高差(南北) Relative dispersion (Northsouth) (RDNS) (m) | 0.00-3.07 | 0.95 | 0.83 |
相对高差(东西) Relative dispersion (Eastwest) (RDEW) (m) | 0.39-4.09 | 2.58 | 0.62 |
相对海拔 Relative altitude (RA) (m) | 4.50-66.20 | 33.42 | 15.47 |
土壤含水量 Water content (WC) | 0.20-0.30 | 0.24 | 0.02 |
pH值 pH value | 3.74-4.05 | 3.85 | 0.06 |
有机碳 Organic carbon (C) (mg/g) | 18.79-42.75 | 26.18 | 4.37 |
全氮 Total nitrogen (TN) (mg/g) | 1.61-3.62 | 2.14 | 0.33 |
铵态氮 Ammonium nitrogen (NH4+) (mg/g) | 0.00-0.01 | 0.01 | 0.00 |
速效磷 Available phosphorus (AP) (mg/g) | 0.00-0.01 | 0.00 | 0.00 |
速效钾 Available potassium (AK) (mg/g) | 0.08-0.23 | 0.12 | 0.03 |
表1 南亚热带常绿阔叶林样地基础变量信息统计表
Table 1 The statistical information of basic variables in the sampling plot in a lower subtropical evergreen broad-leaved forest
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 SD |
---|---|---|---|
物种丰富度 Species richness (R) | 6.00-21.50 | 12.86 | 3.69 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index (H') | 1.23-2.68 | 2.07 | 0.31 |
Simpson多样性指数 Simpson diversity index (D) | 0.62-0.91 | 0.82 | 0.06 |
Pielou均匀度指数 Pielou evenness index (E) | 0.59-0.98 | 0.82 | 0.08 |
胸高断面积标准偏差 Basal area standard deviation (SDba) | 14.83-4,696.75 | 333.41 | 678.16 |
胸高断面积变异系数 Basal area coefficient of variation (CVba) | 86.49-2,069.74 | 486.98 | 371.29 |
胸高断面积基尼系数 Basal area Gini coefficient (GCba) | 0.55-1.00 | 0.82 | 0.10 |
树高标准偏差 Height standard deviation (SDh) | 1.49-8.40 | 4.14 | 1.77 |
树高变异系数 Height coefficient of variation (CVh) | 28.73-147.37 | 79.32 | 30.73 |
树高基尼系数 Height Gini coefficient (GCh) | 0.18-0.54 | 0.35 | 0.08 |
坡度(南北) Slop degree (Northsouth) (SNS) (°) | 0.00-89.61 | 10.52 | 11.86 |
坡度(东西) Slop degree(Eastwest) (SEW) (°) | 4.72-39.00 | 26.79 | 5.78 |
相对高差(南北) Relative dispersion (Northsouth) (RDNS) (m) | 0.00-3.07 | 0.95 | 0.83 |
相对高差(东西) Relative dispersion (Eastwest) (RDEW) (m) | 0.39-4.09 | 2.58 | 0.62 |
相对海拔 Relative altitude (RA) (m) | 4.50-66.20 | 33.42 | 15.47 |
土壤含水量 Water content (WC) | 0.20-0.30 | 0.24 | 0.02 |
pH值 pH value | 3.74-4.05 | 3.85 | 0.06 |
有机碳 Organic carbon (C) (mg/g) | 18.79-42.75 | 26.18 | 4.37 |
全氮 Total nitrogen (TN) (mg/g) | 1.61-3.62 | 2.14 | 0.33 |
铵态氮 Ammonium nitrogen (NH4+) (mg/g) | 0.00-0.01 | 0.01 | 0.00 |
速效磷 Available phosphorus (AP) (mg/g) | 0.00-0.01 | 0.00 | 0.00 |
速效钾 Available potassium (AK) (mg/g) | 0.08-0.23 | 0.12 | 0.03 |
类型 Class | 成分 Component | 特征值 Eigenvalue | 方差贡献率 Contribution rate of variance (%) | 方差累积贡献率 Cumulative contribution rate of variance (%) |
---|---|---|---|---|
物种多样性 Species diversity | 1 | 2.93 | 73.45 | 73.45 |
2 | 1.02 | 25.52 | 98.97 | |
3 | 0.03 | 0.76 | 99.73 | |
4 | 0.01 | 0.27 | 100 | |
结构多样性 Structural diversity | 1 | 4.22 | 70.37 | 70.37 |
2 | 0.93 | 15.54 | 85.91 | |
3 | 0.47 | 7.78 | 93.69 | |
4 | 0.25 | 4.19 | 97.88 | |
5 | 0.07 | 1.11 | 98.99 | |
6 | 0.06 | 1.01 | 100 | |
地形 Topography | 1 | 2.77 | 55.35 | 55.35 |
2 | 1.49 | 29.77 | 85.12 | |
3 | 0.61 | 12.13 | 97.25 | |
4 | 0.13 | 2.66 | 99.91 | |
5 | 0.00 | 0.09 | 100 | |
土壤养分 Soil nutrients | 1 | 3.51 | 50.17 | 50.17 |
2 | 1.37 | 19.62 | 69.79 | |
3 | 0.84 | 11.98 | 81.77 | |
4 | 0.65 | 9.22 | 90.99 | |
5 | 0.42 | 6.05 | 97.04 | |
6 | 0.13 | 1.89 | 98.93 | |
7 | 0.07 | 1.07 | 100 |
表2 物种多样性、结构多样性、地形和土壤养分主成分的特征值和贡献率
Table 2 Eigenvalues and contribution rate of species diversity factors, structural diversity factors, topography factors and soil nutrients factors.
类型 Class | 成分 Component | 特征值 Eigenvalue | 方差贡献率 Contribution rate of variance (%) | 方差累积贡献率 Cumulative contribution rate of variance (%) |
---|---|---|---|---|
物种多样性 Species diversity | 1 | 2.93 | 73.45 | 73.45 |
2 | 1.02 | 25.52 | 98.97 | |
3 | 0.03 | 0.76 | 99.73 | |
4 | 0.01 | 0.27 | 100 | |
结构多样性 Structural diversity | 1 | 4.22 | 70.37 | 70.37 |
2 | 0.93 | 15.54 | 85.91 | |
3 | 0.47 | 7.78 | 93.69 | |
4 | 0.25 | 4.19 | 97.88 | |
5 | 0.07 | 1.11 | 98.99 | |
6 | 0.06 | 1.01 | 100 | |
地形 Topography | 1 | 2.77 | 55.35 | 55.35 |
2 | 1.49 | 29.77 | 85.12 | |
3 | 0.61 | 12.13 | 97.25 | |
4 | 0.13 | 2.66 | 99.91 | |
5 | 0.00 | 0.09 | 100 | |
土壤养分 Soil nutrients | 1 | 3.51 | 50.17 | 50.17 |
2 | 1.37 | 19.62 | 69.79 | |
3 | 0.84 | 11.98 | 81.77 | |
4 | 0.65 | 9.22 | 90.99 | |
5 | 0.42 | 6.05 | 97.04 | |
6 | 0.13 | 1.89 | 98.93 | |
7 | 0.07 | 1.07 | 100 |
图1 物种多样性和结构多样性与生物量和生产力之间的相关关系。(a) 4个物种多样性指标的第一轴和第二轴载荷量; (b) 6个结构多样性指标的第一轴和第二轴载荷量; (c)物种多样性第一主轴载荷量与生物量和生产力之间的关系; (d)结构多样性第一主轴载荷量与生物量和生产力之间的关系。缩写代表含义同表1。
Fig. 1 Relationship between species diversity and structural diversity with plant biomass and productivity. (a) Loadings on the first and second axes of four species diversity indexes; (b) Loadings on the first and second axes of six structural diversity indexes; (c) Relationship between loadings on the first axe of species diversity and plant biomass and productivity; (d) Relationship between loadings on the first axe of structural diversity and plant biomass and productivity. Abbreviations have the same as in Table 1.
图2 南亚热带常绿阔叶林树木多样性、生物量和生产力与土壤养分和地形因子之间的Pearson相关关系。P: Productivity; B: Biomass; 其余缩写代表含义同表1, *, P < 0.05, **, P < 0.01, ***, P < 0.001, 白色*为正相关, 黑色*为负相关。
Fig. 2 Pearson correlation between tree species diversity, plant biomass, plant productivity and soil nutrients, topographic factors in subtropical evergreen broad‐leaved forest. The letter B and P mean biomass and productivity, and other abbreviations have the same as in Table 1, *, P < 0.05, **, P < 0.01, ***, P < 0.001, white sign (*) is positive correlation, black sign (*) is negative correlation.
图3 物种多样性、结构多样性、地形和土壤养分对生产力和生物量的影响。(a)方差分解解释各因子对生产力的单独效应和共同效应; (b)方差分解解释各因子对生物量的单独效应和共同效应; (c)结构方程模型(SEM)解释地形和土壤养分通过物种多样性和结构多样性对生产力的直接和间接影响(N = 100)。SEM考虑了所有可能的路径, R2表示所解释的方差比例。箭头上的数字表示标准化的路径系数。箭头宽度表示路径系数的强度。*, P < 0.05, **, P < 0.01, ***, P < 0.001。
Fig. 3 The impact of species diversity, structural diversity, topography and soil nutrients on plant productivity and biomass. (a) Variation partitioning analysis explains the pure and shared effect of factors on plant productivity. (b) Variation partitioning analysis explains the pure and shared effect of factors on plant biomass. (c) Structural equation model (SEM) reveals the direct and indirect effects of species diversity, structural diversity, topography and soil nutrients on plant productivity and biomass (N = 100). The SEM considered all plausible pathways, to increase the degrees of freedom, R2 indicates the proportion of variance explained. The numbers on the arrows indicate standardized path coefficients. The arrow width is proportional to the strength of the path coefficients. *, P < 0.05, **, P < 0.01, ***, P < 0.001.
[1] |
Cadotte MW (2017) Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20, 989-996.
DOI PMID |
[2] |
Cardinale BJ, Srivastava DS, Duffy EJ, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992.
DOI URL |
[3] |
Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature, 405, 234-242.
DOI URL |
[4] |
Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785.
DOI URL |
[5] |
Doherty JM, Callaway J, Zedler JB (2011) Diversity-function relationships changed in a long-term restoration experiment. Ecological Applications, 21, 2143-2155.
DOI URL |
[6] | Fang JY, Shen ZH, Cui HT (2004) Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12, 10-19. (in Chinese with English abstract) |
[ 方精云, 沈泽昊, 崔海亭 (2004) 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12, 10-19.]
DOI |
|
[7] | Fang YT, Mo JM, Peng SL, Li DJ (2003) Role of forest succession on carbon sequestration of forest ecosystems in lower subtropical China. Acta Ecologica Sinica, 23, 1685-1694. (in Chinese with English abstract) |
[ 方运霆, 莫江明, 彭少麟, 李德军 (2003) 森林演替在南亚热带森林生态系统碳吸存中的作用. 生态学报, 23, 1685-1694.] | |
[8] | Fang YT, Mo JM, Zhou GY, Xue JH (2005) Response of diameter at breast height increment to N additions in forests of Dinghushan Biosphere Reserve. Journal of Tropical and Subtropical Botany, 13, 198-204. (in Chinese with English abstract) |
[ 方运霆, 莫江明, 周国逸, 薛璟花 (2005) 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 13, 198-204.] | |
[9] | Feng J, Wang QC, Lu AJ, Yu SH, Zheng Y, Wang YC, Chen DS (2021) Study on vegetation diversity and soil characteristics of Larix olgensis uneven-aged mixed stand in eastern Liaoning mountain region. Journal of Northwest A&F University (Natural Science Edition), 49, 57-66. (in Chinese with English abstract) |
[ 冯健, 王骞春, 陆爱君, 于世河, 郑颖, 王月婵, 陈东升 (2021) 辽东山区长白落叶松异龄混交林植被多样性和土壤特征研究. 西北农林科技大学学报(自然科学版), 49, 57-66.] | |
[10] |
Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2017) Above-ground biomass is driven by mass‐ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106, 561-570.
DOI URL |
[11] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
DOI URL |
[12] | Guo ZH, Zang RG, Jiang YX (2002) The formation and maintenance mechanisms of biodiversity and the research techniques for biodiversity. Scientia Sylvae Sinicae, 38, 116-124. (in Chinese with English abstract) |
[ 郭志华, 臧润国, 蒋有绪 (2002) 生物多样性的形成、维持机制及其宏观研究方法. 林业科学, 38, 116-124.] | |
[13] |
Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtisi PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818-1827.
PMID |
[14] | He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract) |
[ 贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 27, 835-843.]
DOI |
|
[15] | Huang WJ, Liu JX, Tang XL, Huang YH, Liu SZ, Chu GW, Zhou GY (2009) Inorganic nitrogen and available phosphorus concentrations in the soils of five forests at Dinghushan, China. Chinese Journal of Applied and Environmental Biology, 15, 441-447. (in Chinese with English abstract) |
[ 黄文娟, 刘菊秀, 唐旭利, 黄钰辉, 刘世忠, 褚国伟, 周国逸 (2009) 鼎湖山5种森林土壤的无机氮和有效磷含量. 应用与环境生物学报, 15, 441-447.] | |
[16] |
Huang XR (2018) Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi. Biodiversity Science, 26, 690-700. (in Chinese with English abstract)
DOI URL |
[ 黄小荣 (2018) 广西马尾松林植物功能多样性与生产力的关系. 生物多样性, 26, 690-700.]
DOI |
|
[17] |
Jafari M, Chahouki MAZ, Tavili A, Azarnivand H, Amiri GZ (2004) Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). Journal of Arid Environments, 56, 627-641.
DOI URL |
[18] |
Kant S (2002) The marginal cost of structural diversity of mixed uneven-aged hard maple forests. Canadian Journal of Forest Research, 32, 616-628.
DOI URL |
[19] |
Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167
DOI URL |
[20] |
Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39, 1835-1847.
DOI URL |
[21] |
Lexerød NL, Eid T (2006) An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecology and Management, 222, 17-28.
DOI URL |
[22] |
Liang JJ, Buongiorno J, Monserud RA (2005) Growth and yield of all-aged Douglas-fir-western hemlock forest stands: A matrix model with stand diversity effects. Canadian Journal of Forest Research, 35, 2368-2381.
DOI URL |
[23] |
Liang JJ, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. Forest Ecology and Management, 243, 116-127.
DOI URL |
[24] |
Lie ZY, Lin W, Huang WJ, Fang X, Huang CM, Wu T, Chu GW, Liu SZ, Meng Z, Zhou GY, Liu JX (2019) Warming changes soil N and P supplies in model tropical forests. Biology and Fertility of Soils, 55, 751-763.
DOI URL |
[25] |
Liu B, Chen HYH, Yang J (2019) Linking understory species diversity, community-level traits and productivity in a Chinese boreal forest. Journal of Vegetation Science, 30, 247-256.
DOI |
[26] | Liu GS, Jiang NH, Zhang LD (1996) Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. (in Chinese) |
[ 刘光菘, 蒋能慧, 张连第 (1996) 土壤理化分析与剖面描述. 中国标准出版社, 北京.] | |
[27] |
Long JN, Shaw JD (2010) The influence of compositional and structural diversity on forest productivity. Forestry, 83, 121-128.
DOI URL |
[28] |
Long WX, Yang XB, Li DH (2012) Patterns of species diversity and soil nutrients along a chronosequence of vegetation recovery in Hainan Island, South China. Ecological Research, 27, 561-568.
DOI URL |
[29] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804-808.
PMID |
[30] |
Lu XK, Mo JM, Dong SF (2008) Effects of nitrogen deposition on forest biodiversity: A review. Acta Ecologica Sinica, 28, 5532-5548. (in Chinese with English abstract)
DOI URL |
[ 鲁显楷, 莫江明, 董少峰 (2008) 氮沉降对森林生物多样性的影响. 生态学报, 28, 5532-5548.] | |
[31] |
Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010) Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
DOI URL |
[32] |
Murphy SJ, Audino LD, Whitacre J, Eck JL, Wenzel JW, Queenborough SA, Comita LS (2015) Species associations structured by environment and land-use history promote beta-diversity in a temperate forest. Ecology, 96, 705-715.
DOI URL |
[33] |
Ouyang S, Xiang WH, Wang XP, Zeng YL, Lei PF, Deng XW, Peng CH (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. Forest Ecology and Management, 372, 291-302.
DOI URL |
[34] |
Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia, 155, 287-299.
PMID |
[35] |
Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20, 170-180.
DOI URL |
[36] |
Perroni-Ventura Y, Montaña C, García-Oliva F (2006) Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. Journal of Vegetation Science, 17, 719-728.
DOI URL |
[37] | Pielou EC (1975) Ecological diversity. John Wiley and Sons, New York. |
[38] |
Potter KM, Woodall CW (2014) Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across U.S. forests. Forest Ecology and Management, 321, 117-129.
DOI URL |
[39] |
Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827.
DOI URL |
[40] |
Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramirez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9, 2203-2246.
DOI URL |
[41] |
Ricklefs RE, Latham R, Qian H (1999) Global patterns of tree species richness in moist forests: Distinguishing ecological influences and historical contingency. Oikos, 86, 369-373.
DOI URL |
[42] |
Schnabel F, Schwarz JA, Dănescu A, Fichtner A, Nock CA, Bauhus J, Potvin C (2019) Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Global Change Biology, 25, 4257-4272.
DOI PMID |
[43] |
Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark C, Collins M, Dauby G, Ding Y, Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martin E, Miyamoto K, Araujo-Murakami A, Nagamasu H, Nilus R, Nurtjahya E, Oliveira Á, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Poulsen J, Ramirez-Angulo H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, Steege H, Stevart T, Navarro-Aguilar GE, Sunderland T, Suzuki E, Tang JW, Theilade I, Heijden G, van Valkenburg J, van Do T, Vilanova E, Vos V, Wich S, Wöll H, Yoneda T, Zang RG, Zhang MG, Zweifel N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261-1271.
DOI URL |
[44] |
Tan LZ, Fan CY, Fan XH (2017) Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 41, 1149-1156. (in Chinese with English abstract)
DOI URL |
[ 谭凌照, 范春雨, 范秀华 (2017) 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 41, 1149-1156.]
DOI |
|
[45] |
Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365.
DOI URL |
[46] |
Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
DOI URL |
[47] |
Valencia R, Condit R, Muller-Landau HC, Hernandez C, Navarrete H (2009) Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 25, 473-482.
DOI URL |
[48] |
Vile D, Shipley B, Garnier E (2006) Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters, 9, 1061-1067.
DOI URL |
[49] | Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[50] | Wang WF, Lei XD, Ma ZH, Kneeshaw DD, Peng CH (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506-515. |
[51] |
Wen C, Jin GZ (2019) Effects of functional diversity on productivity in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 43, 94-106. (in Chinese with English abstract)
DOI URL |
[ 温纯, 金光泽 (2019) 功能多样性对典型阔叶红松林生产力的影响. 植物生态学报, 43, 94-106.]
DOI |
|
[52] | Wen DZ, Wei P, Kong GH, Zhang QM, Huang ZL (1997) Biomass study of the community of Castanopsis chinensis + Cryptocarya concinna + Schina superba in a southern China reserve. Acta Ecologica Sinica, 17, 47-54. (in Chinese with English abstract) |
[ 温达志, 魏平, 孔国辉, 张倩媚, 黄忠良 (1997) 鼎湖山锥栗 + 黄果厚壳桂 + 荷木群落生物量及其特征. 生态学报, 17, 47-54.] | |
[53] |
Whittaker RH (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251.
DOI URL |
[54] |
Willig MR (2011) Biodiversity and productivity. Science, 333, 1709-1710.
DOI URL |
[55] |
Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology, 81, 887-892.
DOI URL |
[56] |
Wilson JB, Lee WG, Mark AF (1990) Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand. Vegetatio, 86, 15-20.
DOI URL |
[57] |
Wu CP, Han WJ, Jiang B, Liu BW, Yuan WG, Shen AH, Huang YJ, Zhu JR (2018) Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province. Biodiversity Science, 26, 545-553. (in Chinese with English abstract)
DOI URL |
[ 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹 (2018) 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性. 生物多样性, 26, 545-553.]
DOI |
|
[58] |
Xiong X, Zhang HL, Wu JP, Chu GW, Zhou GY, Zhang DQ (2016) 13C and 15N isotopic signatures of plant-soil continuum along a successional gradient in Dinghushan Biosphere Reserve. Chinese Journal of Plant Ecology, 40, 533-542. (in Chinese with English abstract)
DOI URL |
[ 熊鑫, 张慧玲, 吴建平, 褚国伟, 周国逸, 张德强 (2016) 鼎湖山森林演替序列植物-土壤碳氮同位素特征. 植物生态学报, 40, 533-542.]
DOI |
|
[59] |
Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 10, 54-62.
DOI URL |
[60] |
Yuan Z, Ali A, Wang S, Gazol A, Freckleton R, Wang X, Lin F, Ye J, Zhou L, Hao Z, Loreau M, (2018) Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of The Total Environment, 630, 422-431.
DOI URL |
[61] |
Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and Above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[62] |
Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100, 742-749.
DOI URL |
[63] | Zhang YR, Ouyang X, Chu GW, Zhang QM, Liu SZ, Zhang DQ, Li YL (2014) Spatial heterogeneity of soil organic carbon and total nitrogen in a monsoon evergreen broadleaf forest in Dinghushan, Guangdong, China. Chinese Journal of Applied Ecology, 25, 19-23. (in Chinese with English abstract) |
[ 张亚茹, 欧阳旭, 褚国伟, 张倩媚, 刘世忠, 张德强, 李跃林 (2014) 鼎湖山季风常绿阔叶林土壤有机碳和全氮的空间分布. 应用生态学报, 25, 19-23.] | |
[64] |
Zou S, Zhou GY, Zhang QM, Xu S, Xiong X, Xia YJ, Liu SZ, Meng Z, Chu GW (2018) Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve. Chinese Journal of Plant Ecology, 42, 442-452. (in Chinese with English abstract)
DOI URL |
[ 邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟 (2018) 1992-2015年鼎湖山季风常绿阔叶林群落结构动态. 植物生态学报, 42, 442-452.]
DOI |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[5] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[6] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[7] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[8] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[9] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[10] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[11] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[12] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[13] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[14] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[15] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn