Biodiversity Science ›› 2018, Vol. 26 ›› Issue (6): 545-553.doi: 10.17520/biods.2017320

• Original Papers • Previous Article     Next Article

Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province

Chuping Wu1, Wenjuan Han2, Bo Jiang1, Bowen Liu3, Weigao Yuan1, Aihua Shen1, *(), Yujie Huang1, Jinru Zhu1   

  1. 1 Zhejiang Academy of Forestry, Hangzhou 310023
    2 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321000
    3 Ministry of Agriculture, Forestry and Fisheries of Dinghai District, Zhoushan City, Zhejiang Province, Dinghai, Zhejiang 316100
  • Received:2017-12-01 Accepted:2018-04-02 Online:2018-09-11
  • Shen Aihua E-mail:mailahshen@126.com
  • About author:

    # Co-first authors

Experimental studies of the relationship between biodiversity and ecosystem functioning (BEF) have mainly been conducted in artificial ecosystems with randomly assembled species, highlighting the need of testing this relationship in real world. In particular, these studies did not consider the effects of environmental factors on the relationship between biodiversity and ecosystem functioning. Hence, we used secondary forests, which are widely distributed in the subtropics, as research objects. We used model fitting methods to study the relationship between species richness and biomass/productivity. Meanwhile, we also explored the effects of environmental factors (e.g., elevation, aspect, slope, and soil depth) on biomass and productivity and on BEF relationships. Our results showed that there was a significant linear correlation between species richness and biomass, and a quartic correlation between species richness and productivity (i.e., humped curve) when environmental factors were not considered. Considering that biomass was significantly affected by stem density and soil depth, while productivity was not affected by environmental factors, we found that only under the environmental conditions characterized by steep slopes, south aspects, or higher soil depths, was species richness significantly correlated with biomass. The relationship between species richness and productivity showed a significant quadratic correlation under higher elevation, but not under any other environmental conditions. These results suggest that the relationship between species richness and productivity is different from the relationship between species richness and biomass, and both these relationships depend on environmental factors.

Key words: biodiversity, ecosystem functioning, subtropical forest, environmental gradient, Zhejiang

Table 1

Analysis of the optimal model between species richness and biomass/productivity"

模型 Models F R2 P AICc
BIO~S 5.436 0.110 0.02 818.941
BIO~ S + S 2 2.700 0.116 0.07 821.261
∆BIO~S 0.545 0.012 0.46 -34.944
∆BIO ~ S + S 2 3.075 0.125 0.05 -38.123

Fig. 1

Relationships between species richness and biomass (a) / productivity (b). The biomass in (a) means the total biomass in each plot (20 m × 20 m) in 2015, and the productivity in (b) means the ration of biomass between 2012 and 2015 in each plot. Dotted lines refer to the 95% confidence interval. Solid lines fitted by the model with lowest AICc value in the Table 1."

Table 2

The significant environmental and community factors influencing the biomass and productivity"

估计值 Estimate 标准误 SE t P
生物量
Biomass (BIO)
截距 Intercept 8.141 0.073 111.036 < 0.001
个体密度 Density (ind./ha) 0.221 0.076 2.900 < 0.01
土壤厚度 Soil depth (cm) 0.136 0.075 1.815 0.07
物种丰富度 Species richness 0.126 0.076 1.646 0.10
生产力
Productivity (∆BIO)
截距 Intercept 0.147 0.020 7.665 < 0.001
物种丰富度 Species richness 0.265 0.103 2.590 < 0.05
物种丰富度的平方 Square of species richness -0.249 0.102 -2.434 < 0.05

Fig. 2

Variance of biomass and productivity between different environmental gradients. The biomass means the total biomass in each plot (20 m × 20 m) in 2015, and the productivity means the ration of biomass between 2012 and 2015 in each plot."

Table 3

Relationships between species richness and biomass/productivity in different environmental gradients"

范围
Ranges
样方数
No. of plots
功能变量
Functions
一次方程
Linear equation
R2 二次方程
Quadratic equation
R2 ΔAICc
BIC AICc Sig. BIC AICc Sig.
海拔
Elevation (m)
≤ 65 23 BIO 423.583 421.439 + 0.07 426.317 423.997 +, - 0.08 2.558
∆BIO -3.744 -5.887 + 0.02 -3.257 -5.577 +, - 0.12 0.310
> 65 23 BIO 403.055 400.912 + 0.20* 405.131 402.811 -, + 0.23# 1.899
∆BIO -23.754 -25.897 + 0.02 -26.458 -28.778 +, - 0.24# -2.881
坡度
Slope
≤ 20° 33 BIO 596.410 592.748 + 0.01 598.983 594.426 +, - 004 1.678
∆BIO -15.746 -19.408 + 0.03 -14.324 -18.882 +, - 0.09 0.526
> 20° 13 BIO 227.108 228.079 + 0.59** 227.930 230.671 -, + 0.64** 2.592
∆BIO -10.178 -9.206 + 0.01 -11.306 -8.566 +, - 0.24 0.640
坡向
Aspect
南、西南
South, Southwest
21 BIO 370.428 368.706 + 0.19* 371.462 369.784 -, + 0.26# 1.078
西、东南
West, Southeast
∆BIO -25.380 -27.102 + 0.01 -26.650 -28.328 +, - 0.19 -1.226
东、东北
East, Northeast
25 BIO 456.261 453.747 + 0.07 457.746 454.871 +, - 0.14 1.124
北、西北
North, Northwest
∆BIO -4.620 -7.133 + 0.02 -3.648 -6.524 +, - 0.10 0.609
土层厚度
Soil depth
(cm)
< 40 26 BIO 454.222 451.539 + 0.01 457.463 454.335 +, - 0.01 2.996
∆BIO -14.875 -17.559 + 0.04 -11.992 -15.119 +, - 0.06 2.440
≥ 40 20 BIO 367.197 365.710 + 0.14# 369.428 368.112 +, - 0.17 2.402
∆BIO -12.855 -14.342 + 0.03 -13.070 -14.386 +, - 0.17 -0.044
林龄
Forest age
≤ 15 22 BIO 404.116 402.176 + 0.05 406.959 404.948 -, + 0.06 2.772
∆BIO -13.638 -15.578 - 0.01 -14.995 -17.006 +, - 0.14 -1.428
> 15 24 BIO 422.094 419.760 + 0.20* 425.249 422.642 -, + 0.20# 2.882
∆BIO -9.905 -12.239 + 0.02 -8.569 -11.176 +, - 0.09 1.063
[1] Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology & Management, 401, 125-134.
[2] Barrufol M, Schmid B, Bruelheide H, Chi XL, Hector A, Ma KP, Michalski S, Tang ZY, Niklaus PA (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE, 8, e81246.
[3] Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89.
[4] Burnham KP, Anderson DR (2010) Model Selection and Multi-model Inference: A Practical Information Theoretic Approach. Springer, New York.
[5] Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecological Research, 16, 895-903.
[6] Cavanaugh KC, Gosnell JS, Davis SL, Davis JS, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology Biogeography, 23, 563-573.
[7] Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4, e5695.
[8] Corlett RT (2013) Where are the subtropics? Biotropica, 45, 273-275.
[9] Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7, 437-444.
[10] Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HA, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305.
[11] Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, USA, 105, 6087-6090.
[12] Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate Data Analysis, 5th edn. Prentice Hall, New Jersey.
[13] Hautier Y, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
[14] He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)
[贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?植物生态学报, 27, 835-843.]
[15] Hortal J, Triantis KA, Meiri S, Sfenthourakis S (2009) Island species richness increases with habitat diversity. The American Naturalist, 174, E205.
[16] Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang AN, Li Y, Haerdtle W, von Oheimb G, Yang XF, Pei KQ, Both S, Liu XJ, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hoenig L, Hu RY, Klein, AM, Kuehn P, Liang Y, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZH, Welk E, Wirth C, Wubet T, Xiang WH, Yan JY, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2017) Strong positive biodiversity-productivity relationships in a subtropical forest experiment. bioRxiv, doi: https://doi.org/10.1101/206722.
[17] Jiang L, Wan S, Li L (2009) Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 97, 603-608.
[18] Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167.
[19] Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brand S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Worte V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957.
[20] Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
[21] Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 247-248. (in Chinese)
[马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 247-248.]
[22] Ma KP, He JS, Bruelheide H, Klein AM, Liu XJ, Schmid B (2017) Biodiversity-ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 10, 1-3.
[23] Mori AS, Osono T, Cornelissen JHC, Craine J, Uchida M (2017) Biodiversity-ecosystem function relationships change through primary succession. Oikos, 126, 1637-1649.
[24] Ouyang S, Xiang W, Wang XP, Zeng YL, Lei PF, Deng XW, Peng CH (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. Forest Ecology and Management, 372, 291-302.
[25] Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
[26] Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology Biogeography, 20, 170-180.
[27] Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132, 263-280.
[28] Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias C, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud S, Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426.
[29] Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn D, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589-592.
[30] Schmid B, Balvanera P, Cardinale BJ, Godbold J, Pfisterer AB, Raffaelli D, Solan M, Srivastava DS (2009) Consequences of species loss for ecosystem functioning: Meta-analyses of data from biodiversity experiments. In: Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds Naeem S, Bunker DE, Hector A, Loreau M, Perrings C), pp. 14-29. Oxford University Press, Oxford.
[31] Shi L, Liu SR (2017) Methods of estimating forest biomass: A review. In: Biomass Volume Estimation and Valorization for Energy (ed. Tumuluru JS). InTech.
[32] Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648.
[33] Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society of London B: Biological Sciences, 278, 877-884.
[34] Tan SS, Wang RR, Gong XL, Cai JY, Shen GC (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. (in Chinese with English abstract)
[谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064. ]
[35] Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
[36] Tilman D, Reich PB, Knops J, Wedin DA, Mielke T (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
[37] van der Sande MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L, Hector A (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 105, 1223-1234.
[38] Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton, New Jersey.
[39] Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, Myers-Smith IH, Sax DF (2017) Plant biodiversity change across scales during the anthropocene. Annual Review of Plant Biology, 68, 563-586.
[40] Wacker L, Baudois O, Eichenberger-Glinz, Schmid B (2008) Environmental heterogeneity increases complementarity in experimental grassland communities. Basic and Applied Ecology, 9, 467-474.
[41] Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27, 646-653.
[42] Willig MR (2011) Biodiversity and productivity. Science, 333, 1709-1710.
[43] Wu X, Wang XP, Tang ZY, Shen ZH, Zheng CY, Xia XL, Fang JY (2015) The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38, 602-613.
[44] Yan ER, Wang XH, Huang JJ (2006) Shifts in plant nutrient use strategies under secondary forest succession. Plant & Soil, 289, 187-197.
[45] Yang B (2014) Key Factors Affecting the Relationship Between Forest Biodiversity and Ecosystem Function in Subtropical China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)
[杨波 (2014) 影响亚热带森林生物多样性与生态系统功能关系的关键因子研究. 博士学位论文, 中国科学院植物研究所, 北京.]
[46] Zhang QG, Zhang DY (2002) Biodiversity and ecosystem functioning: Recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract)
[张全国, 张大勇 (2002) 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.]
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[8] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[9] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[12] ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138.
[13] Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41.
[14] Qian Haiyuan,Yu Jianping,Shen Xiaoli,Ding Ping,Li Sheng. Diversity and composition of birds in the Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 76-80.
[15] Li Tong,Li Junning,Wei Yulian. Species diversity and distribution of wood-decaying fungi in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2019, 27(1): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants[J]. J Syst Evol, 2016, 54(4): 277 -306 .
[2] Yao Zhao,Jiakuan Chen. The origin of crops in the Yangtze River Basin and its relevance for biodiversity[J]. Biodiv Sci, 2018, 26(4): 333 -345 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[4] ZHOU Zhong-Ze, ZHAO Zuo-Cheng, WANG Xu-Ying, XU Ren-Xin, LI Yu-Cheng. Pollen morphology, tepal and fruit microcharacteristics of the genus Fagopyrum Mill. from China[J]. J Syst Evol, 2003, 41(1): 63 -78 .
[5] He Ting-Nong, Liu Shang-Wu. New taxa of Swertia L. from China[J]. J Syst Evol, 1980, 18(1): 75 -85 .
[6] Chen Chia-Jui. Sphaerotylos C. J. Chen—A Remarkable New Genus of Urticaceae from China, with Notes on Stigmas of the Family[J]. J Syst Evol, 1985, 23(6): 444 -456 .
[7] Li Changfu. A Brief Introduction on First Symposium of Natural Protected Areas in China[J]. Chin J Plan Ecolo, 1983, 7(2): 161 -162 .
[8] LI Sheng-Sheng,WANG Shi-Jun, BEI Yue-Min. On Some Dispersed Cordaitean Cuticles from Cathaysian Flora in the Permian of China and Their Significance[J]. J Integr Plant Biol, 2003, 45(5): 517 -522 .
[9] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2019, 43(1): 77 -84 .
[10] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .