生物多样性 ›› 2017, Vol. 25 ›› Issue (11): 1182-1191. DOI: 10.17520/biods.2017167
所属专题: 生物多样性与生态系统功能
黄小波1,2, 李帅锋1,2, 苏建荣1,2,*(), 刘万德1,2, 郎学东1,2
收稿日期:
2017-06-05
接受日期:
2017-11-20
出版日期:
2017-11-20
发布日期:
2017-11-20
通讯作者:
苏建荣
基金资助:
Xiaobo Huang1,2, Shuaifeng Li1,2, Jianrong Su1,2,*(), Wande Liu1,2, Xuedong Lang1,2
Received:
2017-06-05
Accepted:
2017-11-20
Online:
2017-11-20
Published:
2017-11-20
Contact:
Su Jianrong
摘要:
全球气候变化、森林采伐和生境破碎化导致全球生物多样性迅速下降, 并对生态系统功能产生了严重的影响。近年来, 生物多样性与生态系统功能的关系成为生态学研究的热点, 但以往的研究多关注生物多样性与单一生态系统功能的关系, 对生态系统尤其是森林生态系统多功能性的研究亟待加强。本文基于云南松(Pinus yunnanensis)天然次生林94个样地的调查数据, 选取木本植物生物量、土壤有机碳含量、植物氮、植物磷、土壤全氮、土壤水解性氮、土壤全磷和土壤有效磷等8个生态系统功能变量, 采用平均值法、单阈值法和多阈值法综合评价了云南松天然次生林物种丰富度与生态系统多功能性的关系及影响因子。结果表明: (1)云南松天然次生林物种丰富度与生态系统多功能性的关系强于它与单一生态系统功能间的关系; (2)在3-88%阈值范围内, 物种丰富度对于多功能性具有显著正影响, 在中等阈值水平(54%)上, 物种丰富度效应最大, 此时可能的最大物种丰富度作用实现百分比为53.53%; (3)云南松天然次生林中物种丰富度对多功能性的影响最大, 表现为极显著正相关; 年均气温、年均降水量和土壤pH对多功能性无显著直接影响, 但均可通过对物种丰富度的影响而产生间接影响。物种丰富度对生态系统多功能性具有重要意义, 但是物种数目的增加并不能保证所有功能均达到最佳状态, 在中等功能水平时, 物种数目的增加对多功能性的影响最大。
黄小波, 李帅锋, 苏建荣, 刘万德, 郎学东 (2017) 云南松天然次生林物种丰富度与生态系统多功能性的关系. 生物多样性, 25, 1182-1191. DOI: 10.17520/biods.2017167.
Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang (2017) The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest. Biodiversity Science, 25, 1182-1191. DOI: 10.17520/biods.2017167.
功能指标 Function parameters | 物种丰富度 Speicies richness | |
---|---|---|
R2 | P | |
植物氮 Plant nitrogen | 0.01 | P = 0.310 |
植物磷 Plant phosphorus | 0.26 | P < 0.001 |
土壤水解性氮 Soil hydrolyzable nitrogen | 0.20 | P < 0.001 |
土壤有效磷 Soil available phosphorus | 0.20 | P < 0.001 |
土壤全氮 Soil total nitrogen | 0.19 | P < 0.001 |
土壤全磷 Soil total phosphorus | 0.13 | P < 0.001 |
土壤有机碳 Soil organic carbon | 0.26 | P < 0.001 |
木本植物生物量 Woody plant biomass | 0.04 | P < 0.001 |
生态系统多功能性 Ecosystem multifunctionality | 0.39 | P < 0.001 |
表1 云南松天然次生林物种丰富度与单一生态系统功能以及生态系统多功能性的关系
Table 1 Relationships between species richness and individual ecosystem functioning, ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest
功能指标 Function parameters | 物种丰富度 Speicies richness | |
---|---|---|
R2 | P | |
植物氮 Plant nitrogen | 0.01 | P = 0.310 |
植物磷 Plant phosphorus | 0.26 | P < 0.001 |
土壤水解性氮 Soil hydrolyzable nitrogen | 0.20 | P < 0.001 |
土壤有效磷 Soil available phosphorus | 0.20 | P < 0.001 |
土壤全氮 Soil total nitrogen | 0.19 | P < 0.001 |
土壤全磷 Soil total phosphorus | 0.13 | P < 0.001 |
土壤有机碳 Soil organic carbon | 0.26 | P < 0.001 |
木本植物生物量 Woody plant biomass | 0.04 | P < 0.001 |
生态系统多功能性 Ecosystem multifunctionality | 0.39 | P < 0.001 |
图1 不同阈值水平下云南松天然次生林的物种丰富度效应。物种丰富度效应表示物种丰富度与达到所测功能最大值的某一阈值的功能数间关系的斜率。各个点是拟合值, 阴影代表±1的置信区间。
Fig. 1 The effect of species richness at different thresholds in the Pinus yunnanensis natural secondary forest. The effect represent the slope of the relationship between species richness and the number of functions beyond a threshold of the maximum observed value. Points are the fitted values and shading indicated ±1 confidence interval.
图2 云南松天然次生林物种丰富度与达到所测功能最大值的某一阈值的功能数之间的关系。矩形框内的百分数代表4个不同的阈值水平(20%, 40%, 60%, 80%)。
Fig. 2 The relationship between species richness of Pinus yunnanensis natural secondary forest and the number of functions beyond a threshold of the maximum observed value at different thresholds. The percentage in rectangle frames represent four different threshold values (20%, 40%, 60%, and 80% of maximum).
图3 生物和非生物因子与生态系统多功能性(EMF)关系的结构方程模型。实线代表极显著(P < 0.01); 虚线代表不显著路径(P > 0.05), 并给出路径系数β。Plant SR: 物种丰富度; MAT: 年均气温; MAP: 年均降水量; Soil pH: 土壤pH值。
Fig. 3 Structural equation models (SEM) of biotic and abiotic factors as predictors of ecosystem multifunctionality (EMF). Solid arrows represent extremely significant (P < 0.01); dotted grey arrows represent non-significant paths (P > 0.05). Path coefficients (β) are on the arrows. Plant SR, Plant species richness; MAT, Mean annual temperature; MAP, Mean annual precipitation.
[1] | Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottinggham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science, 333, 1750-1753. |
[2] | Adler PB, Levine JM (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos, 116, 221-232. |
[3] | Ali A, Xu MS, Zhao YT, Zhang QQ, Zhou LL, Yang XD, Yan ER (2015) Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fennica, 49, 1-10. |
[4] | Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Kathryn Morris E, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Stechel J, Steffen- Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Weiner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843. |
[5] | Bao SD (2000) Soil Agro-chemistry Analysis. China Agricultural Press, Beijing. (in Chinese) |
[鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.] | |
[6] | Bradford MA, Wood SA, Bardgett RD, Black HIJ, Bonkowski M, Eggers T, Grayston SJ, Kandeler E, Manning P, Setälä H, Jones TH (2014) Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences, USA, 111, 14478-14483. |
[7] | Brandt P, Abson DJ, Dellasala DA, Feller R, Wehrden HV (2014) Multifunctionality and biodiversity: ecosystem services in temperate rainforests of the Pacific Northwest, USA. Biological Conservation, 169, 362-371. |
[8] | Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150267. |
[9] | Butchart SH, WalpoleM, Collen B, van Strien A, Scharlemann JP, Almond RE, Baillie JE, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández Morcillo M, Oldfield TE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science, 328, 1164-1168. |
[10] | Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Caedinale BJ, Hooper DU, Dee LE, Duffy JE (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology & Evolution, 5, 111-124. |
[11] | Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature, 472, 86-89. |
[12] | Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592. |
[13] | Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992. |
[14] | Compilation Group of the Vegetation of Yunnan(1987) Vegetation of Yunnan. Science Press, Beijing. (in Chinese) |
[云南植被编写组(1987)云南植被 . 科学出版社, 北京.] | |
[15] | Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffeies TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. |
[16] | Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676. |
[17] | Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, USA, 105, 6087-6090. |
[18] | Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231. |
[19] | Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. |
[20] | Garssen AG, Baattrup-Pedersen A, Riis T, Raven BM, Hoffman CC, Verhoeven JTA, Soons MB (2017) Effects of increased flooding on riparian vegetation: field experiments simulating climate change along five European lowland streams. Global Change Biology, 23, 3052-3063. |
[21] | Genet A, Wernsdörfer H, Jonard M, Pretzsch H, Rauch M, Ponette Q, Nys C, Legout A, Ranger J, Vallet P, Saint-André L (2011) Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology & Management, 261, 1188-1202. |
[22] | Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology, 27, 605-614. |
[23] | Härtl FH, Barka I, Hahn WA, Hlásny T, Irauschek F, Knoke T, Lexer MJ, Griess VC (2016) Multifunctionality in European mountain forests—an optimization under changing climatic. Canadian Journal of Forest Research, 46, 163-171. |
[24] | He JZ, Ge Y, Xu Z, Chen C (2009) Linking soil bacterial diversity to ecosystem multifunctionality using backward- elimination boosted trees analysis. Journal of Soils and Sediments, 9, 547-554. |
[25] | Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190. |
[26] | Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in european grasslands. Science, 286, 1123-1127. |
[27] | Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-109. |
[28] | Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202. |
[29] | Jax K (2010) Ecosystem Functioning. Cambridge University Press, Cambridge. |
[30] | Jiang L, Lu YC, Liao SX, Li K, Li GQ (2008) A study on diametral structure of Yunnan pine forest in the plateaus of mid-Yunnan Province. Forest Research, 21, 125-130. (in Chinese with English abstract) |
[姜磊, 陆元昌, 廖声熙, 李昆, 李根前 (2008) 滇中高原云南松林分直径结构研究. 林业科学研究, 21, 125-130.] | |
[31] | Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015) The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. |
[32] | Jin ZZ, Peng J (2004) Pinus yunnanensis. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[金振洲, 彭鉴 (2004) 云南松. 云南科技出版社, 昆明.] | |
[33] | Lambert MC, Ung CH, Raulier F (2005) Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35, 1996-2018. |
[34] | Lefcheck JS, Byrnes JEK, Isbell F, Gamfeld L, Griffin JN, Eisenhauer N, Hensel MJ, Hector A, Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. |
[35] | Li GX, Shi HJ, Meng GT, Fang XJ, Chai Y, He LP, Zhang ZH, Yang YX (2007) Community structural properties and species diversity in primary Pinus yunnanensis forest. Journal of Zhejiang Forestry College, 24, 396-400. (in Chinese with English abstract) |
[李贵祥, 施海静, 孟广涛, 方向京, 柴勇, 和丽萍, 张正海, 杨永祥 (2007) 云南松原始林群落结构特征及物种多样性分析. 浙江林学院学报, 24, 396-400.] | |
[36] | Li LF, Han MY, Zheng W, Su JW, Li WC, Zheng SH, Gong JB (2009) The causes of formation of low quality forest of Pinus yunnanensis and their classification. Journal of West China Forestry Science, 38(4), 94-99. (in Chinese with English abstract) |
[李莲芳, 韩明跃, 郑畹, 苏俊武, 李卫冲, 郑树红, 龚建斌 (2009) 云南松低质低效林的成因及其分类. 西部林业科学, 38(4), 94-99.] | |
[37] | Li JP, Zheng ZR, Zhao NX, Gao YB (2016) Relationship between ecosystem multifunctionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747. (in Chinese with English abstract) |
[李静鹏, 郑志荣, 赵念席, 高玉葆 (2016) 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.] | |
[38] | Lohbeck M, Bongers F, Martinez-Ramos M, Poorter L (2016) The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology, 97, 2772-2779. |
[39] | Maestre FT, Boeken, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218. |
[40] | Mori AS, Isbell F, Fujii S, Makoto K, Matsuoka S, Osono T (2015) Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 19, 249-259. |
[41] | Oberski D (2014) Lavaan.survey: an R package for complex survey analysis of structural equation models. Journal of Statistical Software, 57, 1-27. |
[42] | Pasari JR, Levi T, Zavaleta ES, Tilman D (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 110, 10219-10222. |
[43] | Paul KI, Roxburgh SH, England JR, Brooksbank K, Larmour JS, Ritson P, Wildy D, Sudmeyer R, Raison RJ, Hobbs T, Murphy S, Sochacki S, McArthur G, Barton C, Jonson J, Theiveyanathan S, Carter J (2014) Root biomass of carbon plantings in agricultural landscapes of southern Australia: development and testing of allometrics. Forest Ecology & Management, 318, 216-227. |
[44] | Pendleton RM, Hoeinghaus DJ, Gomes LC, Agostinho AA (2014) Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment. PLoS ONE, 9, e84568. |
[45] | Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015) Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406. |
[46] | R Development Core Team (2016) R: A Language And Environment For Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[47] | Roger F, Bertilsson S, Langenheder, S Ahmed O, Gamfeldt L (2016) Multiple dimensions of bacterial diversity unrelated to functioning, stability and multifunctionality. Ecology, 97, 2716-2718. |
[48] | Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720. |
[49] | van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Muhie Dawud, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Müller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016a) Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nature Communications, 7, 11109. |
[50] | van der Plas F, Manning P, Soliveres S, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes DA, Coppi A, Bestias CC, Dawud SM, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Mueller S, Muys B, Nguyen D, Pollastrini M, Ratcliffe S, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016b) Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences, USA, 113, 3557-3562. |
[51] | Wang GY, Wang TL, Kang HJ, Mang S, Riehl B, Seely B, Liu SR, Guo FT, Li QL, Innes JL (2016) Adaptation of Asia- Pacific forests to climate change. Journal of Forestry Research, 27, 469-488. |
[52] | Wang ZH, Tang ZY, Fang JY (2009) The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624. (in Chinese with English abstract) |
[王志恒, 唐志尧, 方精云 (2009) 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.] | |
[53] | Wu H (2017) Species richness and environmental interpretation of pine and oak forest community in Qinling Mountains. Ecology and Environmental Sciences, 26, 931-938. (in Chinese with English abstract) |
[吴昊 (2017) 秦岭松栎林群落物种丰富度特征及其环境解释. 生态环境学报, 26, 931-938.] | |
[54] | Xiong DP, Zhao GS, Wu JS, Shi PL, Zhang XZ (2016) The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 36, 3362-3371. (in Chinese with English abstract) |
[熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲 (2016) 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 36, 3362-3371.] | |
[55] | Xu W, Jing X, Ma ZY, He JS (2016a) A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. (in Chinese with English abstract) |
[徐炜, 井新, 马志远, 贺金生 (2016a) 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.] | |
[56] | Xu W, Ma ZY, Jing X, He JS (2016b) Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71. (in Chinese with English abstract) |
[徐炜, 马志远, 井新, 贺金生 (2016b) 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[57] | Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, USA, 107, 1443-1446. |
[58] | Zhang QG, Zhang DY (2002) Biodiversity and ecosystem functioning: recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract) |
[张全国, 张大勇 (2002) 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn