生物多样性 ›› 2014, Vol. 22 ›› Issue (2): 174-181. DOI: 10.3724/SP.J.1003.2014.08139
收稿日期:
2013-06-14
接受日期:
2013-11-05
出版日期:
2014-03-20
发布日期:
2014-04-03
通讯作者:
肖治术
基金资助:
Hongling Guo1,2, Zhiwen Li2, Zhishu Xiao1,*()
Received:
2013-06-14
Accepted:
2013-11-05
Online:
2014-03-20
Published:
2014-04-03
Contact:
Xiao Zhishu
摘要:
果实(种子)产量和质量是影响植物种群更新的重要因素。为了探明影响黄连木果实产量和种子命运的因素以及这些影响因素之间的相互作用, 作者于2009年对河南省济源市45株黄连木(Pistacia chinensis)结果样树的植株特征、果实特征、果实产量和种子命运等进行了测定, 并用结构方程模型进行综合分析。结果表明: (1)黄连木果实产量与树高、树冠面积和果序大小等特征成正相关, 但与胸径、果实大小相关性不显著; (2)与捕食者饱和假说的预测不一致, 单株果实产量对黄连木广肩小蜂(Eurytoma plotnikovi)的种子捕食率(即虫蛀率)无显著直接负向效应; (3)树高和果实大小对虫蛀率为显著直接正向效应, 胸径对虫蛀率为显著直接负向效应, 显示黄连木广肩小蜂对植株特征和果实特征有一定的选择能力; (4)空壳率与虫蛀率成显著负相关, 空壳果实越多, 越易逃避黄连木广肩小蜂的寄生, 空壳果实的存在对完好种子起到了一定保护作用, 可能是黄连木防御昆虫寄生的重要机制; (5)空壳率和虫蛀率对种子完好率有显著直接负向效应, 而胸径、果序大小和果实产量对完好率为间接正向效应, 树高和果实大小为间接负向效应。可见, 黄连木植株特征和果实特征均不同程度地影响其果实产量和昆虫寄生, 从而影响黄连木的种子质量和种群更新。
郭洪岭, 李志文, 肖治术 (2014) 应用结构方程模型解析影响黄连木果实产量 和种子命运的因素. 生物多样性, 22, 174-181. DOI: 10.3724/SP.J.1003.2014.08139.
Hongling Guo,Zhiwen Li,Zhishu Xiao (2014) Factors influencing the fruit crops and seed fates of Pistacia chinensis: the results of structural equation modeling. Biodiversity Science, 22, 174-181. DOI: 10.3724/SP.J.1003.2014.08139.
变量 Variables | 均值±标准误 Mean ± SE | 变量范围 Range |
---|---|---|
树高 Tree height (m) | 7.67 ± 0.29 | 3.82–12.40 |
胸径 DBH (cm) | 14.05 ± 1.06 | 5.60–37.70 |
树冠面积 Crown area (cm2) | 92.83 ± 10.41 | 16.79–333.83 |
果序大小 Infructescence size | 112.01 ± 4.67 | 55.05–214.77 |
果实大小 Fruit size (cm3) | 0.122 ± 0.004 | 0.07–0.19 |
果实产量 Log (crop) | 4.49 ± 0.11 | 2.25–5.59 |
空壳率 Seedless rate (%) | 54.73 ± 3.89 | 11–99 |
虫蛀率 Insect-infested rate (%) | 22.36 ± 3.29 | 0–85 |
完好率 Sound rate (%) | 22.91 ± 3.13 | 0–73.50 |
表1 黄连木植株特征、果实特征、果实产量和种子命运等变量的综合统计(平均值±标准误)
Table 1 General statistics (mean ± SE) of plant and fruit traits, fruit crops and seed fates of Pistacia chinensis in Jiyuan City, Henan Province
变量 Variables | 均值±标准误 Mean ± SE | 变量范围 Range |
---|---|---|
树高 Tree height (m) | 7.67 ± 0.29 | 3.82–12.40 |
胸径 DBH (cm) | 14.05 ± 1.06 | 5.60–37.70 |
树冠面积 Crown area (cm2) | 92.83 ± 10.41 | 16.79–333.83 |
果序大小 Infructescence size | 112.01 ± 4.67 | 55.05–214.77 |
果实大小 Fruit size (cm3) | 0.122 ± 0.004 | 0.07–0.19 |
果实产量 Log (crop) | 4.49 ± 0.11 | 2.25–5.59 |
空壳率 Seedless rate (%) | 54.73 ± 3.89 | 11–99 |
虫蛀率 Insect-infested rate (%) | 22.36 ± 3.29 | 0–85 |
完好率 Sound rate (%) | 22.91 ± 3.13 | 0–73.50 |
变量 Variables | 果实产量 Log(crop) | 空壳率 Seedless rate (%) | 虫蛀率 Insect-infested rate (%) | 完好率 Sound rate (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | |||||||||||||
树高 Tree height | – | – | – | – | – | – | 0.394* | – | 0.394 | – | –0.377 | –0.377 | ||||||||||||
胸径 DBH | 0.244 | – | 0.244 | –0.278* | – | –0.278 | –0.388* | 0.123 | –0.265 | – | 0.497 | 0.497 | ||||||||||||
树冠面积 Crown area | – | – | – | – | – | – | – | – | – | – | – | – | ||||||||||||
果序大小 Infructescence size | 0.465** | – | 0.465 | –0.469** | – | –0.469 | – | 0.197 | 0.197 | – | 0.222 | 0.222 | ||||||||||||
果实大小 Fruit size | 0.181 | – | 0.181 | – | – | – | 0.437** | –0.034 | 0.403 | –0.111 | –0.386 | –0.497 | ||||||||||||
果实产量 Log(crop) | – | – | – | – | – | – | –0.184 | – | –0.184 | – | 0.177 | 0.177 | ||||||||||||
空壳率 Seedless rate (%) | – | – | – | – | – | – | –0.603** | – | –0.603 | –0.874** | 0.577 | –0.297 | ||||||||||||
虫蛀率 Insect-infested rate (%) | – | – | – | – | – | – | – | – | – | –0.957** | – | –0.957 | ||||||||||||
决定系数 Coefficient of determination (R2) | 0.309 | 0.297 | 0.577 | 0.822 |
表2 黄连木植株特征和果实特征对果实产量和种子命运的直接影响、间接影响和总影响(标准化通径系数)
Table 2 Magnitude of direct, indirect and total effects (standardized path coefficients) of plant and fruit traits on fruit crops and seed fates of Pistacia chinensis in Jiyuan City, Henan Province
变量 Variables | 果实产量 Log(crop) | 空壳率 Seedless rate (%) | 虫蛀率 Insect-infested rate (%) | 完好率 Sound rate (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | 直接影响 Direct effect | 间接影响 Indirect effect | 总影响 Total effect | |||||||||||||
树高 Tree height | – | – | – | – | – | – | 0.394* | – | 0.394 | – | –0.377 | –0.377 | ||||||||||||
胸径 DBH | 0.244 | – | 0.244 | –0.278* | – | –0.278 | –0.388* | 0.123 | –0.265 | – | 0.497 | 0.497 | ||||||||||||
树冠面积 Crown area | – | – | – | – | – | – | – | – | – | – | – | – | ||||||||||||
果序大小 Infructescence size | 0.465** | – | 0.465 | –0.469** | – | –0.469 | – | 0.197 | 0.197 | – | 0.222 | 0.222 | ||||||||||||
果实大小 Fruit size | 0.181 | – | 0.181 | – | – | – | 0.437** | –0.034 | 0.403 | –0.111 | –0.386 | –0.497 | ||||||||||||
果实产量 Log(crop) | – | – | – | – | – | – | –0.184 | – | –0.184 | – | 0.177 | 0.177 | ||||||||||||
空壳率 Seedless rate (%) | – | – | – | – | – | – | –0.603** | – | –0.603 | –0.874** | 0.577 | –0.297 | ||||||||||||
虫蛀率 Insect-infested rate (%) | – | – | – | – | – | – | – | – | – | –0.957** | – | –0.957 | ||||||||||||
决定系数 Coefficient of determination (R2) | 0.309 | 0.297 | 0.577 | 0.822 |
图1 黄连木植株特征和果实特征对果实产量和种子命运的影响路径图。A: 初始预测模型; B: 最优模型。实线代表正效应, 虚线代表负效应, 双向箭头代表特征间的相互作用, 单箭头的宽度代表标准化通径系数的大小。
Fig. 1 Path diagram for the effects of plant and fruit traits on fruit crop and seed fates of Pistacia chinensis in Jiyuan City, Henan Province. A, Initial prediction model; B, Optimization model. Positive effects are indicated by solid lines and negative effects by dashed lines. Double-headed arrows indicate correlations between traits. The widths of the arrows in Model B indicate the magnitude of the standardized path coefficients.
[1] | Aizen MA (1997) Influence of local floral density and sex ratio on pollen receipt and seed output: empirical and experimental results in dichogamous Alstroemeria aurea (Alstroemeriaceae). Oecologia, 111, 404–412. |
[2] | Bertin RI, Kerwin MA (1998) Floral sex ratios and gynomonoecy in Aster (Asteraceae). American Journal of Botany, 85, 235–244. |
[3] | Campbell DR (1996) Evolution of floral traits in a hermaphroditic plant: field measurements of heritabilities and genetic correlations. Evolution, 50, 1442–1453. |
[4] | Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, Von Der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos, 104, 15–26. |
[5] | Carlsson-Granér U, Elmqvist T, Ågren J, Gardfjell H, Ingvarsson P (1998) Floral sex ratios, disease and seed set in dioecious Silene dioica. Journal of Ecology, 86, 79–91. |
[6] | Chai LY (柴立英), Lü WY (吕文彦), Du KS (杜开书), Xie JL (谢金良) (2006) Bionomics and occurrence of Eurytoma plotnikovi. Chinese Bulletin of Entomology(昆虫知识), 43, 567–570. (in Chinese with English abstract) |
[7] | Crane JC (1973) Parthenocarpy—a factor contributing to the production of blank Pistachio. Hortscience, 5, 388–390. |
[8] | Grace, JB (2006) Structural Equation Modelling and Natural Systems. Cambridge University Press, New York. |
[9] | Grundwag M (1975) Seed set in some Pistacia L. (Anacardiaceae) species after inter- and intra-specific pollination. Israel Journal of Botany, 24, 205–211. |
[10] | Herrera CM (1998) Long-term dynamics of Mediterranean frugivorous birds and fleshy fruits: a 12-year study. Ecological Monographs, 68, 511–538. |
[11] | Irwin RE (2006) The consequences of direct versus indirect species interactions to selection on traits: pollination and nectar robbing in Ipomopsis aggregata. The American Naturalist, 167, 315–328. |
[12] | Jacquemyn H, Brys R (2010) Temporal and spatial variation in flower and fruit production in a food deceptive orchid: a five-year study. Plant Biology, 12, 145–153. |
[13] | Janzen DH (1971) Seed predation by animals. Annual Review of Ecology, Evolution and Systematics, 2, 465–492. |
[14] | Jones FA, Comita LS (2010) Density-dependent predispersal seed predation and fruit set in a tropical tree. Oikos, 119, 1841–1847. |
[15] | Kelly D (1994) The evolutionary ecology of mast seeding. Trends in Ecology and Evolution, 9, 465–470. |
[16] | Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where?Annual Review of Ecology and Systematics, 33, 427–447. |
[17] | Kolb A, Ehrlen J, Eriksson O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspectives in Plant Ecology Evolution and Systematics, 9, 79–100. |
[18] | Liu QX, Wen LZ, Zhou HJ, Wu Q, Harris MK, Xiao ZS (2011) Effects of seed wasps and seedless fruits on fruit and oil yields of Pistacia chinensis as a biofuel tree. Acta Entomologica Sinica(昆虫学报), 54, 1133–1139. |
[19] | Mezquida ET, Olano JM (2013) What makes a good neighborhood? Interaction of spatial scale and fruit density in the predator satiation dynamics of a masting juniper tree. Oecologia, 173, 483–492. |
[20] | Mitchell RJ (1992) Testing evolutionary and ecological hypotheses using path-analysis and structural equation modelling. Functional Ecology, 6, 123–129. |
[21] | Östergård H, Hambäck PA, Ehrlén J (2007) Pre-dispersal seed predation: the role of fruit abortion and selective oviposition. Ecology, 88, 2959–2965. |
[22] | Primack RB (1987) Relationships among flowers, fruits, and seeds. Annual Review of Ecology and Systematics, 18, 409–430. |
[23] | Qin F (秦飞), Guo TB (郭同斌), Liu ZG (刘忠刚), Song MH (宋明辉) (2007) Literature review of researches on Pistacia chinensis Bunge. Nonwood Forest Research(经济林研究), 25, 90–96. (in Chinese with English abstract) |
[24] | Ramos-Ordoñez MF, Márquez-Guzmán J, Coro Arizmendi M (2010) Parthenocarpy and seed production in Burseraceae. In: Desert Plants: Biology and Biotechnology (ed. Ramawat KG), pp. 231–239. Springer, Berlin-Heidelberg. |
[25] | Reader RJ (1993) Control of seedling emergence by ground cover and seed predation in relation to seed size for some old-field species. Journal of Ecology, 81, 169–175. |
[26] | Sallabanks R, Courtney SP (1992) Frugivory, seed predation, and insect-vertebrate interactions. Annual Review of Entomology, 37, 377–400. |
[27] | Scheiner SM, Mitchell RJ, Callahan HS (2000) Using path analysis to measure natural selection. Journal of Evolutionary Biology, 13, 423–433. |
[28] | Strawbridge M, Bell RW, McComb JA, Barrett-Lennard EG (1997) Influence of sex ratio and sexual lability on seed production in the dioecious perennial shrub Atriplex amnicola (Chenopodiaceae). Animal Production Science, 37, 661–666. |
[29] | Sutherland S (1986) Floral sex ratios, fruit-set, and resource allocation in plants. Ecology, 67, 991–1001. |
[30] | Traveset A (1993) Deceptive fruits reduce seed predation by insects in Pistacia terebinthus L. (Anacardiaceae). Evolutionary Ecology, 7, 357–361. |
[31] | Verdú M, García-Fayos P (1998) Ecological causes, function and evolution of abortion and parthenocarpy in Pistacia lentiscus (Anacardiaceae). Canadian Journal of Botany, 76, 134–141. |
[32] | Vergeer P, Kunin WE (2011) Life history variation in Arabidopsis lyrata across its range: effects of climate, population size and herbivory. Oikos, 120, 979–990. |
[33] | Wang F, Xiong XR, Liu CZ (2009) Biofuels in China: opportunities and challenges. In Vitro Cellular and Developmental Biology: Plant, 45, 342–349. |
[34] | Wang X (王学), Xiao ZS (肖治术), Zhang ZB (张知彬), Pan HC (潘红春) (2008) Insect seed predation and its relationships with seed crop and seed size of Quercus mongolica. Acta Entomologica Sinica(昆虫学报), 51, 161–165. (in Chinese with English abstract) |
[35] | Weber A, Kolb A (2012) Local plant density, pollination and trait-fitness relationships in a perennial herb. Plant Biology, 15, 334–343. |
[36] | Wright MG (1994) Unpredictable seed-set: a defence mechanism against seed-eating insects Protea species (Proteaceae). Oecologia, 99, 397–400. |
[37] | Wu ML (吴明隆) (2009) Structural Equation Modelling: Operation and Application of AMOS (结构方程模型: AMOS的操作与应用). Chongqing University Press, Chongqing (in Chinese) |
[38] | Wu ZZ (吴志庄), Li YQ (厉月桥), Wang ZJ (汪泽军), Liu QZ (刘巧哲), Zhang ZX (张志翔)(2012) Analysis on influence factors of individual yield in Pistacia chinensis Bunge. Nonwood Forest Research(经济林研究), 30, 23–27. (in Chinese with English abstract) |
[39] | Zhao YZ (赵亚洲), Xin YF (辛雅芬), Ma QY (马钦彦), Zhang CY (张春雨) (2010) Population sex ratio and spatial distribution of dioecious tree species Pistacia chinensis. Chinese Journal of Ecology(生态学杂志), 29, 1087–1093. (in Chinese with English abstract) |
[1] | 杜宇晨, 刘蓓萌, 陈俊峰, 王浩, 谢屹. 基于结构方程模型的农户保护意愿影响因素分析: 以东北虎豹国家公园珲春片区为例[J]. 生物多样性, 2024, 32(1): 23155-. |
[2] | 蔡畅, 张雪, 朱晨, 赵郁豪, 乔格侠, 丁平. 千岛湖片段化生境中蚜虫群落嵌套格局的形成: 岛屿面积和寄主植物多样性的作用[J]. 生物多样性, 2023, 31(12): 23183-. |
[3] | 李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186-1197. |
[4] | 侯祥, 封托, 韩宁, 王京, 陈晓宁, 安晓雷, 许磊, 刘起勇, 常罡. 气候变化和经济发展对肾综合征出血热发生的影响[J]. 生物多样性, 2020, 28(10): 1229-1237. |
[5] | 黄小波, 李帅锋, 苏建荣, 刘万德, 郎学东. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 2017, 25(11): 1182-1191. |
[6] | 谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10): 1054-1064. |
[7] | 李娟, 郭聪, 肖治术. 都江堰亚热带森林常见木本植物果实组成与种子扩散策略[J]. 生物多样性, 2013, 21(5): 572-581. |
[8] | 刘鑫, 王政昆, 肖治术. 小泡巨鼠和社鼠对珍稀濒危植物红豆树种子的捕食和扩散作用[J]. 生物多样性, 2011, 19(1): 93-96. |
[9] | 赵瑾, 陈进, 马绍宾. 不同扰动生境中动物对酸苔菜种子的捕食和散布[J]. 生物多样性, 2008, 16(1): 34-43. |
[10] | 李宏俊, 张知彬. 动物与植物种子更新的关系Ⅱ.动物对种子的捕食、扩散、贮藏及与幼苗建成的关系[J]. 生物多样性, 2001, 09(1): 25-37. |
[11] | 李宏俊, 张知彬. 动物与植物种子更新的关系Ⅰ. 对象、方法与意义[J]. 生物多样性, 2000, 08(4): 405-412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn