
生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 574-582. DOI: 10.3724/SP.J.1003.2014.14116 cstr: 32101.14.SP.J.1003.2014.14116
任思远1, 王婷1,*(
), 祝燕2, 叶永忠1, 李聪3, 潘娜1, 叶永忠1
收稿日期:2014-06-06
接受日期:2014-09-28
出版日期:2014-09-20
发布日期:2014-10-09
通讯作者:
王婷
基金资助:
Siyuan Ren1, Ting Wang1,*(
), Yan Zhu2, Yongzhong Ye1, Zhiliang Yuan1, Cong Li3, Na Pan1, Luxin Li1
Received:2014-06-06
Accepted:2014-09-28
Online:2014-09-20
Published:2014-10-09
Contact:
Wang Ting
摘要:
群落的系统发育结构能够有效地反映各种生态过程对群落组成的影响, 通过研究群落系统发育结构能推断出其形成的生态过程, 对于揭示群落动态具有重要意义。作者将宝天曼1 ha落叶阔叶林样地分为10 m×10 m、20 m×20 m、25 m×25 m三个尺度的样方, 将样地内乔木个体划分为小径级(1 cm ≤ DBH<5 cm)、中径级 (5 cm ≤ DBH<10 cm)、大径级(DBH ≥ 10 cm)三个径级, 通过比较各个阶段系统发育结构的变化, 来分析其群落系统发育结构的生态过程。不同零模型的比较发现, 宝天曼落叶阔叶林群落的净系统发育亲缘关系指数(net relatedness index, NRI)和最近种间亲缘关系指数(net nearest taxa index, NTI)值都随着研究尺度和径级的增加而降低, 表明该群落在不同时空尺度上都表现出群落系统发育结构发散, 而且系统发育密度制约对大径级个体的系统发育结构的影响大于小径级个体。上述结果说明密度制约是地处暖温带-亚热带过渡带的宝天曼落叶阔叶林群落物种多样性维持的重要机制。
任思远, 王婷, 祝燕, 叶永忠, 李聪, 潘娜, 叶永忠 (2014) 暖温带-北亚热带过渡带落叶阔叶林群落不同径级系统发育结构的变化. 生物多样性, 22, 574-582. DOI: 10.3724/SP.J.1003.2014.14116.
Siyuan Ren, Ting Wang, Yan Zhu, Yongzhong Ye, Zhiliang Yuan, Cong Li, Na Pan, Luxin Li (2014) Phylogenetic structure of individuals with different DBH sizes in a deciduous broad-leaved forest community in the temperate-subtropical ecological transition zone, China. Biodiversity Science, 22, 574-582. DOI: 10.3724/SP.J.1003.2014.14116.
图1 宝天曼落叶阔叶林1 ha森林样地58种木本植物的系统发育关系
Fig. 1 Hypothesized phylogenetic relationship among 58 woody species of the deciduous broad-leaved forest in Baotianman National Nature Reserve
| 尺度 Scale | MPD平均随机值 Mean MPD randomization | MPD平均实际测量值 Mean MPD analysis | 标准差 SD | 净相关指数 NRI | 零模型 Null model |
|---|---|---|---|---|---|
| 10 m×10 m | 178.13 | 262.55 | 43.57 | -1.97 | 约束型 Constrained |
| 263.58 | 262.55 | 84.12 | 0.03 | 非约束型 Unconstrained | |
| 20 m×20 m | 196.36 | 288.74 | 41.59 | -2.20 | 约束型 Constrained |
| 286.36 | 288.74 | 71.55 | -0.01 | 非约束型 Unconstrained | |
| 25 m×25 m | 201.98 | 297.13 | 40.38 | -2.27 | 约束型 Constrained |
| 293.39 | 297.13 | 68.11 | -0.04 | 非约束型 Unconstrained |
表1 宝天曼落叶阔叶林不同零模型和不同尺度下平均成对分类系统发育距离(MPD)和净相关指数(NRI)
Table 1 Mean pairwise phylogenetic distance (MPD) and net relatedness index (NRI) with different null models and different spatial scales in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve
| 尺度 Scale | MPD平均随机值 Mean MPD randomization | MPD平均实际测量值 Mean MPD analysis | 标准差 SD | 净相关指数 NRI | 零模型 Null model |
|---|---|---|---|---|---|
| 10 m×10 m | 178.13 | 262.55 | 43.57 | -1.97 | 约束型 Constrained |
| 263.58 | 262.55 | 84.12 | 0.03 | 非约束型 Unconstrained | |
| 20 m×20 m | 196.36 | 288.74 | 41.59 | -2.20 | 约束型 Constrained |
| 286.36 | 288.74 | 71.55 | -0.01 | 非约束型 Unconstrained | |
| 25 m×25 m | 201.98 | 297.13 | 40.38 | -2.27 | 约束型 Constrained |
| 293.39 | 297.13 | 68.11 | -0.04 | 非约束型 Unconstrained |
| 尺度 Scale | MNND平均随机值 Mean MNND randomization | MNND平均实际测量值 Mean MNND analysis | 标准差 SD | 最近邻体指数 NTI | 零模型 Null model |
|---|---|---|---|---|---|
| 10 m×10 m | 172.63 | 238.72 | 55.80 | -1.110 | 约束型 Constrained |
| 231.88 | 238.72 | 89.65 | 0.007 | 非约束型 Unconstrained | |
| 20 m×20 m | 141.09 | 199.81 | 49.40 | -1.170 | 约束型 Constrained |
| 188.50 | 199.81 | 74.82 | -0.024 | 非约束型 Unconstrained | |
| 25 m×25 m | 133.57 | 189.81 | 47.05 | -1.180 | 约束型 Constrained |
| 179.78 | 189.81 | 69.60 | -0.034 | 非约束型 Unconstrained |
表2 宝天曼落叶阔叶林不同零模型和不同尺度下平均最近系统发育距离(MNND)和最近邻体指数(NTI)
Table 2 Mean nearest neighbor phylogenetic distance (MNND) and nearest taxon index (NTI) with different null models and different spatial scales in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve
| 尺度 Scale | MNND平均随机值 Mean MNND randomization | MNND平均实际测量值 Mean MNND analysis | 标准差 SD | 最近邻体指数 NTI | 零模型 Null model |
|---|---|---|---|---|---|
| 10 m×10 m | 172.63 | 238.72 | 55.80 | -1.110 | 约束型 Constrained |
| 231.88 | 238.72 | 89.65 | 0.007 | 非约束型 Unconstrained | |
| 20 m×20 m | 141.09 | 199.81 | 49.40 | -1.170 | 约束型 Constrained |
| 188.50 | 199.81 | 74.82 | -0.024 | 非约束型 Unconstrained | |
| 25 m×25 m | 133.57 | 189.81 | 47.05 | -1.180 | 约束型 Constrained |
| 179.78 | 189.81 | 69.60 | -0.034 | 非约束型 Unconstrained |
图2 不同尺度下不同零模型的宝天曼森林净相关指数(NRI)和平均最近邻体指数(NTI)。A1, A2, A3, a1, a2, a3为约束型零模型, B1, B2, B3, b1, b2, b3为非约束型零模型。
Fig. 2 Net relatedness index (NRI) and nearest taxon index (NTI) with different null models and different spatial scales in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve. A1, A2, A3, a1, a2, a3 for unconstrained null models, and B1, B2, B3, b1, b2, b3 for constrained null models.
| 尺度 Scale (m) | 模型 Model | χ2 | df | P |
|---|---|---|---|---|
| 10 m×10 m | NRI vs. DBH | 30.19 | 2 | <0.0010 |
| NTI vs. DBH | 34.50 | 2 | <0.0010 | |
| 20 m×20 m | NRI vs. DBH | 3.92 | 2 | 0.1409 |
| NTI vs. DBH | 14.78 | 2 | 0.0006 | |
| 25 m×25 m | NRI vs. DBH | 7.15 | 2 | 0.0280 |
| NTI vs. DBH | 12.64 | 2 | 0.0020 | |
| 径级 DBH class | ||||
| A (1 cm≤DBH< 5 cm) | NRI vs. scale | 0.93 | 2 | 0.6384 |
| NTI vs. scale | 6.51 | 2 | 0.0386 | |
| B (5 cm≤DBH<10 cm) | NRI vs. scale | 3.69 | 2 | 0.1574 |
| NTI vs. scale | 0.81 | 2 | 0.6671 | |
| C (DBH≥10 cm) | NRI vs. scale | 5.85 | 2 | 0.0538 |
| NTI vs. scale | 2.61 | 2 | 0.2712 |
表3 宝天曼落叶阔叶林群落系统发育结构指数与径级和尺度的关系
Table 3 The relationship of phylogenetic structure and DBH sizes and sample sizes in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve
| 尺度 Scale (m) | 模型 Model | χ2 | df | P |
|---|---|---|---|---|
| 10 m×10 m | NRI vs. DBH | 30.19 | 2 | <0.0010 |
| NTI vs. DBH | 34.50 | 2 | <0.0010 | |
| 20 m×20 m | NRI vs. DBH | 3.92 | 2 | 0.1409 |
| NTI vs. DBH | 14.78 | 2 | 0.0006 | |
| 25 m×25 m | NRI vs. DBH | 7.15 | 2 | 0.0280 |
| NTI vs. DBH | 12.64 | 2 | 0.0020 | |
| 径级 DBH class | ||||
| A (1 cm≤DBH< 5 cm) | NRI vs. scale | 0.93 | 2 | 0.6384 |
| NTI vs. scale | 6.51 | 2 | 0.0386 | |
| B (5 cm≤DBH<10 cm) | NRI vs. scale | 3.69 | 2 | 0.1574 |
| NTI vs. scale | 0.81 | 2 | 0.6671 | |
| C (DBH≥10 cm) | NRI vs. scale | 5.85 | 2 | 0.0538 |
| NTI vs. scale | 2.61 | 2 | 0.2712 |
图3 宝天曼落叶阔叶林群落不同径级和不同尺度NRI(a)及NTI(b)的变化。横轴中A: 小径级1 cm ≤ DBH < 5 cm; B: 中径级5 cm ≤ DBH <10 cm; C: 大径级DBH ≥ 10 cm。
Fig. 3 Dynamics of NRI(a) and NTI(b) with different DBH sizes and different spatial scales (10 m×10 m, 20 m×20 m, 25 m×25 m) in a 1-ha deciduous broad-leaved forest plot in Baotianman National Nature Reserve.A, Small DBH class (1cm ≤ DBH < 5 cm); B, Middle DBH class (5 cm≤ DBH < 10 cm); C, Large DBH class (DBH≥10 cm).
| [1] | .APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
| [2] | .Bin Y, Wang ZG, Wang ZM, Ye WH, Cao HL, Lian JY (2010) The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology, 209, 237-256. |
| [3] | .Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109-S122. |
| [4] | .Chesson PL (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution and Systematics, 31, 343-366. |
| [5] | .Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 10, 18-22. |
| [6] | .Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boer PJD, Gradwell GR), pp. 298-312. Centre for Agricultural Publishing and Documentation, Wageningen. |
| [7] | .Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
| [8] | .Faith DP (1994) Phylogenetic pattern and the quantification of organismal biodiversity. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 345, 45-58. |
| [9] | .Gotelli NJ, Entsminger GL (2003) Swap algorithms in null model analysis. Ecology, 84, 532-535. |
| [10] | .Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107-145. |
| [11] | .Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a Neotropical forest. Ecological Research, 16, 859-875. |
| [12] | .Jansen PA, Visser MD, Wright SJ, Rutten G, Muller-Landau HC (2014) Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm. Ecology Letters, 17,1111-1120. |
| [13] | .Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
| [14] | .Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters, 12, 949-960. |
| [15] | .Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464. |
| [16] | .Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology, 87, S86-S99. |
| [17] | .Kraft NJB, Cornwell WK, Webb CO (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283. |
| [18] | .Liu XB, Liang M, Etienne RS, Wang Y, Staehelin C, Yu SX (2012) Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters, 15, 111-118. |
| [19] | .Losos JB (1996) Phylogenetic perspectives on community ecology. Ecology, 77, 1344-1354. |
| [20] | .Niu HY (牛红玉), Wang ZF (王峥峰), Lian JY (练琚愉), Ye WH (叶万辉), Shen H (沈浩) (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology. Biodiversity Science(生物多样性), 19, 275-283. (in Chinese with English abstract) |
| [21] | .Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15. |
| [22] | .Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science, 235, 167-171. |
| [23] | .Song CS (宋朝枢) (1999) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
| [24] | .Stevens PF (2007) Angiosperm Phylogeny Website, version 8. .(accessed in October 2013 |
| [25] | .Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424. |
| [26] | .Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780. |
| [27] | .Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos, 58, 239-250. |
| [28] | .Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. 296pp. |
| [29] | .Wang T (王婷), Ren SY (任思远), Yuan ZL (袁志良), Zhu Y (祝燕), Pan N (潘娜), Li LX (李鹿鑫), Ye YZ (叶永忠) (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China. Biodiversity Science(生物多样性), 22, 449-457. (in Chinese with English abstract) |
| [30] | .Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155. |
| [31] | .Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
| [32] | .Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
| [33] | .Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183. |
| [34] | .Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, S123-S131. |
| [35] | .Webb CO, Pitman NC (2002) Phylogenetic balance and ecological evenness. Systematic Biology, 51, 898-907. |
| [36] | .Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London,Series B: Biological Sciences, 268, 2211-2220. |
| [37] | .Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14. |
| [38] | .Yuan ZL (袁志良), Chen Y (陈云), Wei BL (韦博良), Zhang BQ (张斌强), Wang DY (汪东亚), Ye YZ (叶永忠) (2013) Species habitat correlation analysis in temperate-subtropical ecological transition zone. Acta Ecologica Sinica(生态学报), 33, 7819-7826. (in Chinese with English abstract) |
| [1] | 徐智超, 朱美慧, 毛子昆, 王绪高. 氮添加对东北温带阔叶红松林幼苗动态的影响[J]. 生物多样性, 2024, 32(12): 24255-. |
| [2] | 杨向林, 赵彩云, 李俊生, 种方方, 李文金. 植物入侵导致群落谱系结构更加聚集: 以广西国家级自然保护区草本植物为例[J]. 生物多样性, 2024, 32(11): 24175-. |
| [3] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
| [4] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
| [5] | 杨华林, 程跃红, 周天祥, 冯茜, 胡强, 张贵权, 杨建, 张晋东, 王彬, 周材权. 四川卧龙国家级自然保护区多空间尺度下绿尾虹雉的生境选择[J]. 生物多样性, 2022, 30(7): 21535-. |
| [6] | 鲁梦珍, 曾馥平, 宋同清, 彭晚霞, 张浩, 苏樑, 刘坤平, 谭卫宁, 杜虎. 喀斯特常绿落叶阔叶林死亡个体空间分布格局及生境关联[J]. 生物多样性, 2022, 30(4): 21340-. |
| [7] | 李帆, 王党军, 林小元, 纪康, 叶露萍, 黄超, 郑勇, Zhun Mao, 左娟. 八大公山亚热带森林木质残体中大型无脊椎动物群落特征[J]. 生物多样性, 2022, 30(12): 21476-. |
| [8] | 戴冬, 邢华, 杨佳绒, 刘雅静, 蔡焕满, 刘宇. 植物群落稀有种维持机制与土壤反馈的研究进展[J]. 生物多样性, 2021, 29(12): 1687-1699. |
| [9] | 梁栋栋, 彭杰, 高改利, 洪欣, 周守标, 储俊, 王智. 鹞落坪落叶阔叶林蔷薇科主要树种的空间分布格局及种间关联性[J]. 生物多样性, 2020, 28(8): 1008-1017. |
| [10] | 李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进. 生物间高阶相互作用研究进展[J]. 生物多样性, 2020, 28(11): 1333-1344. |
| [11] | 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征[J]. 生物多样性, 2019, 27(4): 439-448. |
| [12] | 庄鸿飞, 张殷波, 王伟, 任月恒, 刘方正, 杜金鸿, 周越. 基于最大熵模型的不同尺度物种分布概率优化热点分析: 以红色木莲为例[J]. 生物多样性, 2018, 26(9): 931-940. |
| [13] | 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. 极小种群野生植物黄梅秤锤树群落结构与动态[J]. 生物多样性, 2018, 26(7): 749-759. |
| [14] | 高梅香, 林琳, 常亮, 孙新, 刘冬, 吴东辉. 土壤动物群落空间格局和构建机制研究进展[J]. 生物多样性, 2018, 26(10): 1034-1050. |
| [15] | 陈龙, 秦帅, 旭日, 杨柳, 赵利清. 阴山山脉天然侧柏林的基本特征[J]. 生物多样性, 2018, 26(1): 66-74. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn