生物多样性 ›› 2010, Vol. 18 ›› Issue (3): 312-322. DOI: 10.3724/SP.J.1003.2010.312
• 论文 • 上一篇
收稿日期:
2010-01-13
接受日期:
2010-04-20
出版日期:
2010-05-20
发布日期:
2012-02-08
通讯作者:
沈泽昊
作者简介:
E-mail: shzh@urban.pku.edu.cn基金资助:
Wanjun Zhang, Qiyan Lu, Jun Liang, Zehao Shen()
Received:
2010-01-13
Accepted:
2010-04-20
Online:
2010-05-20
Published:
2012-02-08
Contact:
Zehao Shen
摘要:
物种丰富度和种域(即物种分布范围)沿环境梯度的变化是生物地理学和生物多样性研究的核心问题。岛屿由于受到地理隔离的作用, 其物种分布、多样性格局及其成因的特殊性对于发展和检验生物地理学的假说具有重要意义。Rapoport法则提出,生物种域存在着随海拔上升而增大的趋势。台湾地区具有显著的海拔梯度和典型的岛屿环境, 其植物区系丰富而独特。我们首次对台湾维管束植物的海拔分布进行研究, 包括不同类群植物的物种丰富度和种域的海拔梯度格局, 并检验了Rapoport法则的适用性。综合相关信息得到台湾维管束植物区系包含241科1,466属4,751种(含种下单位), 对其中具有海拔分布范围信息的3,330种植物进行统计, 结果表明: (1)台湾维管束植物科、属、种的丰富度总体上随海拔上升而减小, 入侵植物丰富度具有类似格局, 而台湾特有植物呈现明显的单峰格局; 按照分类群计, 蕨类植物和裸子植物为单峰格局, 被子植物的3个生态类群均为单调递减格局。(2)物种种域海拔宽度与海拔的关系随不同类群和分析方法而异。其中, 入侵植物的种域宽度和中点海拔具有显著的正相关关系, 支持Rapoport法则, 而全部植物和特有植物不支持; 蕨类植物的海拔分布支持Rapoport法则, 裸子植物不支持, 其他分类群因方法不同而结果之间不一致。我们还比较了台湾和周边大陆和岛屿山地的物种丰富度海拔格局, 认为它们物种丰富度海拔梯度模式的不同可能与降水海拔格局的差异有关; 而关于Rapoport法则的检验表明, 即使在同一山体, 不同类群植物分布范围的海拔模式也可能取决于不同的因素和作用机制。
张婉君, 卢绮妍, 梁军, 沈泽昊 (2010) 台湾维管束植物物种丰富度和种域宽度的海拔格局及对Rapoport法则的检验. 生物多样性, 18, 312-322. DOI: 10.3724/SP.J.1003.2010.312.
Wanjun Zhang, Qiyan Lu, Jun Liang, Zehao Shen (2010) Altitudinal gradients of species richness and range size of vascular plants in Taiwan: a test of Rapoport’s rule. Biodiversity Science, 18, 312-322. DOI: 10.3724/SP.J.1003.2010.312.
全部维管束植物 Total | 特有植物 Endemic | 入侵植物 Invasive | |
---|---|---|---|
科数 No. of families | 241 (234) | 108 | 61 |
属数 No. of genera | 1,466 (1,411) | 352 | 210 |
种数 No. of species | 4,751 (4,398) | 783 | 311 |
表1 台湾的维管束植物多样性基本统计特征
Table 1 The basic statistic characteristics of vascular plants in Taiwan
全部维管束植物 Total | 特有植物 Endemic | 入侵植物 Invasive | |
---|---|---|---|
科数 No. of families | 241 (234) | 108 | 61 |
属数 No. of genera | 1,466 (1,411) | 352 | 210 |
种数 No. of species | 4,751 (4,398) | 783 | 311 |
排序 Rank | 科名 Family | 本地种数 No. of native species | 科名 Family | 特有种数 No. of endemic species | 科名 Family | 入侵种数 No. of invasive species |
---|---|---|---|---|---|---|
1 | 兰科 Orchidaceae | 242 | 兰科 Orchidaceae | 76 | 豆科 Leguminosae | 41 |
2 | 禾本科 Gramineae | 174 | 菊科 Compositae | 60 | 菊科 Compositae | 39 |
3 | 菊科 Compositae | 154 | 蔷薇科 Rosaceae | 38 | 禾本科 Gramineae | 22 |
4 | 豆科 Leguminosae | 134 | 禾本科 Gramineae | 25 | 大戟科 Euphorbiaceae | 10 |
5 | 莎草科 Cyperaceae | 132 | 樟科 Lauraceae | 23 | 苋科 Amaranthaceae | 8 |
6 | 蔷薇科 Rosaceae | 76 | 豆科 Leguminosae | 23 | 茄科 Solanaceae | 8 |
7 | 鳞毛蕨科 Dryopteridaceae | 72 | 毛茛科 Ranunculaceae | 20 | 旋花科 Convolvulaceae | 6 |
8 | 茜草科 Rubiaceae | 68 | 龙胆科 Gentianaceae | 19 | 茜草科 Rubiaceae | 6 |
9 | 大戟科 Euphorbiaceae | 52 | 唇形科 Labiatae | 19 | 锦葵科 Malvaceae | 5 |
10 | 蹄盖蕨科 Athyriaceae | 47 | 荨麻科 Urticaceae | 19 | 柳叶菜科 Onagraceae | 5 |
表2 台湾本地植物、特有植物和入侵植物的前10位优势科及种数
Table 2 The top ten dominant families of the native, endemic and invasive plants in Taiwan
排序 Rank | 科名 Family | 本地种数 No. of native species | 科名 Family | 特有种数 No. of endemic species | 科名 Family | 入侵种数 No. of invasive species |
---|---|---|---|---|---|---|
1 | 兰科 Orchidaceae | 242 | 兰科 Orchidaceae | 76 | 豆科 Leguminosae | 41 |
2 | 禾本科 Gramineae | 174 | 菊科 Compositae | 60 | 菊科 Compositae | 39 |
3 | 菊科 Compositae | 154 | 蔷薇科 Rosaceae | 38 | 禾本科 Gramineae | 22 |
4 | 豆科 Leguminosae | 134 | 禾本科 Gramineae | 25 | 大戟科 Euphorbiaceae | 10 |
5 | 莎草科 Cyperaceae | 132 | 樟科 Lauraceae | 23 | 苋科 Amaranthaceae | 8 |
6 | 蔷薇科 Rosaceae | 76 | 豆科 Leguminosae | 23 | 茄科 Solanaceae | 8 |
7 | 鳞毛蕨科 Dryopteridaceae | 72 | 毛茛科 Ranunculaceae | 20 | 旋花科 Convolvulaceae | 6 |
8 | 茜草科 Rubiaceae | 68 | 龙胆科 Gentianaceae | 19 | 茜草科 Rubiaceae | 6 |
9 | 大戟科 Euphorbiaceae | 52 | 唇形科 Labiatae | 19 | 锦葵科 Malvaceae | 5 |
10 | 蹄盖蕨科 Athyriaceae | 47 | 荨麻科 Urticaceae | 19 | 柳叶菜科 Onagraceae | 5 |
图2 台湾维管束植物科、属、种丰富度的海拔梯度格局。(a)全部植物种; (b)入侵种; (c)特有种。
Fig. 2 Altitudinal pattern of family, genus and species richness of vascular plants in Taiwan. (a) All plant species; (b) Invasive species; (c) Endemic species.
图3 不同类群植物的物种丰富度海拔梯度格局。(a)全部植物; (b)蕨类植物; (c)裸子植物; (d)草本植物; (e)常绿木本植物; (f)落叶木本植物。
Fig. 3 Altitudinal patterns of species richness of different plants. (a) All plants; (b) Pteridophytes; (c) Gymnosperm; (d) Herbs; (e) Evergreen woody plants; (f) Deciduous woody plants.
图4 全部物种、特有种、入侵植物分布宽度海拔梯度格局。(a)全部植物种; (b) 特有种; (c)入侵种
Fig. 4 Altitudinal range size patterns of all species, endemic species and invasive species of plants. (a) All plant species; (b) Endemic species; (c) Invasive species. (1) Stevens method; (2) Pagel’s method; (3) Mid-point method; (4) Cross-species method.
图5 不同植物类群种域海拔分布的Rapoport法则检验。(a)蕨类; (b) 裸子; (c)草本; (d) 常绿; (e)落叶。
Fig. 5 Test of Rapoport’s rule for different plant species groups alonge the elevational gradient. (a) All plants; (b) Pteridophytes; (c) Gymnosperm; (d) Herbs; (e) Evergreen woody plants; (f) Deciduous woody plants. (1) Stevens method; (2) Pagel’s method; (3) Mid-point method; (4) Cross-species method.
图6 台湾与纬度相近的其他山地维管束植物物种丰富度的海拔梯度格局
Fig. 6 A comparison of altitudinal patterns of species richness between Taiwan and other mountains with a similar latitude.
[1] | Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 12, 327-340. |
[2] | Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography, effect of immigration on extinction. Ecology, 58, 445-449. |
[3] | Cai F (蔡飞), Hsu KS (徐国士) (2002) Discussion of plant biodiversity and its characteristics in Taiwan. Journal of Zhejiang University (Science Edition) (浙江大学学报(理学版)), 29, 184-189. (in Chinese with English abstract) |
[4] | Colwell RK (2008) RangeModel: tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography, 31, 4-7. |
[5] | Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595. |
[6] | Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163, E1-E23. |
[7] | Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecological Monographs, 78, 3-18. |
[8] | Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49. |
[9] | Editorial Committee of the Flora of Taiwan (1993-2003). Flora of Taiwan, 2nd edn.Vols.1-6. Department of Botany, National Taiwan University, Taipei. |
[10] | Fang BZ (方碧真), Zhuo ZD (卓正大) (1995) Basic features of seed plant flora in Taiwan area. Tropical Geography (热带地理), 15, 263-271. (in Chinese with English abstract) |
[11] | Fang JY (方精云), Shen ZH (沈泽昊), Cui HT (崔海亭) (2004) Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science (生物多样性), 12, 10-19. (in Chinese with English abstract) |
[12] | Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227. |
[13] | Gaston KJ (2003) The structure and dynamics of geographic ranges, pp.66-123. Oxford University Press, Oxford. |
[14] | Gaston KJ (2005) Biodiversity and extinction: species and people. Progress in Physical Geography, 29, 239-247. |
[15] |
Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport’s rule: time for an epitaph? Trends in Ecology and Evolution, 13, 70-74.
URL PMID |
[16] | Grytnes J-A, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. Journal of Biogeography, 33, 1838-1849. |
[17] | Grytnes J-A, Beaman JH, Romdal TS, Rahbek C (2008) The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo. Journal of Biogeography, 35, 2138-2147. |
[18] | Grytnes JA, Vetaas OR (2002) Species richness and altitude: A domparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist, 159, 294-304. |
[19] | Hsieh C-F (2002) Composition, endemism and phytogeographical affinities of the Taiwan flora. Taiwania, 47, 298-310. |
[20] | Huang WL (黄威廉) (1993) Vegetation of Taiwan (台湾植被). China Environmental Science Press, Beijing. ( in Chinese). |
[21] |
Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
URL PMID |
[22] | Kalmar A, Currie DJ (2006) A global model of island biogeography. Global Ecology and Biogeography, 15, 72-81. |
[23] | Kitayama K, Aiba S-I (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology, 90, 37-51. |
[24] | Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology and Evolution, 15, 513-514. |
[25] |
Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution, 22, 569-74.
DOI URL PMID |
[26] | Lai MZ (赖明洲) (2003) Plant in Taiwan (台湾植物). Chen- xing Press, Beijing. (in Chinese) |
[27] | Lee PF, Ding TS, Hsu FH, Geng S (2004) Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography, 31, 307-314. |
[28] | Letcher AJ, Harvey PH (1994) Variation in geographical range size among mammals of the Palearctic. The American Naturalist, 144, 30-42. |
[29] | Li ZY (李振宇), Wang YZ (王印政) (2004) Plants of Gesneriaceae in China (中国苦苣苔科植物). Henan Science and Technology Publishing House, Zhengzhou. (in Chinese) |
[30] | Liang J (梁军), Shen ZH (沈泽昊) (2010) On the test of Rapoport effect, algorithm comparison, and weakening of mid-domain effect―with a case study on the seed plants in Mt. Wuliang, Yunnan Province. Journal of Mountain Research (山地学报), 28, in press. (in Chinese with English abstract) |
[31] | Lin ZG (林之光) (1995) Climatology of Orographic Precipitation (地形降水气候学). Science Press, Beijing. (in Chinese) |
[32] | Lomolino MV (2000) A call for a new paradigm of island biogeography. Global Ecology and Biogeography, 9, 1-6. |
[33] | Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10, 3-13. |
[34] | Lu AM (路安民) (2001) Origin, diversification and relationships of primitive angiosperm on both sides of the Taiwan Strait, China. Acta Botanica Yunnanica (云南植物研究), 23, 269-277. (in Chinese with English abstract) |
[35] | MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography, pp.203. Princeton University Press, Princeton, New Jersey. |
[36] |
Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational speciesrichness gradients. Nature, 453, 216-219.
DOI URL PMID |
[37] | Pagel MD, May RM, Collie AR (1991) Ecological aspects of the geographical distribution and diversity of mammalian species. The American Naturalist, 137, 791-815. |
[38] | Qiu QA (邱清安), Lin BX (林博雄) (2004) The spatial pattern of temperature and precipitation estimated from monitoring station records. Atmospheric Science (大氣科學), 32, 329-350. (in Chinese) |
[39] | Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography, 18, 200-205. |
[40] | Ribas CR, Schoereder JH (2006) Is the Rapoport effect widespread? Null models revisited. Global Ecology and Biogeography, 15, 614-624. |
[41] | Rohde K, Heap M, Heap D (1993) Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142, 1-16. |
[42] | Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514-527. |
[43] | Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414. |
[44] | Sanders NJ, Moss J, Wagner D (2003) Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography, 12, 93-102. |
[45] | Shen ZH (沈泽昊), Lu QY (卢绮妍) (2009) The Rapoport’s rule for the geographic patterns of species range size. Biodiversity Science (生物多样性), 17, 560-567. (in Chinese with English abstract) |
[46] | Simerbloff DS, Wilson EO (1969) Experimental zoogeography of island: the colonization of empty island. Ecology, 50, 278-296. |
[47] | Song YC, Xu GS (2003) A scheme of vegetation classification of Taiwan, China. Acta Botanica Sinica, 45, 883-895. |
[48] | Song ZC (宋之琛), Huang F (黄翡) (2004) Cretaceous and Tertiary palynofloras in Taiwan area and its correlation with those in neighbouring coastal regions of mainland China. Journal of Tropical Oceanography (热带海洋学报), 23, 1-9. (in Chinese with English abstract) |
[49] | Stevens GC (1989) The latitudinal gradients in geographical range: how so many species co-exist in the tropics. The American Naturalist, 133, 240-256. |
[50] |
Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893-911.
DOI URL PMID |
[51] | Tang ZY (唐志尧), Fang JY (方精云) (2004) A review on the elevational patterns of plant species diversity. Biodiversity Science (生物多样性), 12, 20-28. (in Chinese with English abstract) |
[52] | Tang ZY (唐志尧), Fang JY (方精云), Zhang L (张玲) (2004) Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science (生物多样性), 12, 115-122. (in Chinese with English abstract) |
[53] | Wang GH (王国宏) (2002) Species diversity of plant communities along an altitudinal gradient in the middle section of northern slopes of Qilian Mountains, Zhangye, Gansu, China. Biodiversity Science (生物多样性), 10, 7-14. (in Chinese with English abstract) |
[54] | Wang Z, Tang Z, Fang J (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854. |
[55] | Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470. |
[56] | Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review in Ecology, Evolution and Systematics, 34, 273-309. |
[57] | Ying S-S (应绍舜) (1990) Alpine Plants in Taiwan. National Taiwan University, Internal data. |
[58] | Ying TS (应俊生), Hsu KS (徐国士) (2002) An analysis of the flora of seed plants of Taiwan, China: its nature, characteristics, and relations with the flora of the mainland. Acta Phytotaxonomica Sinica (植物分类学报), 40, 1-51. (in Chinese with English abstract) |
[59] | Zeng WB (曾文彬) (1993) The passage way of the flora migration on both sides of the Taiwan Strait in Pleistocene epoch. Acta Botanica Yunnanica (云南植物研究), 16, 107-110. (in Chinese with English abstract) |
[60] | Zheng CY (郑成洋), Liu ZL (刘增力), Fang JY (方精云) (2004) Tree species diversity along altitudinal gradient on southeastern and northwestern slopes of Mt. Huanggang, Wuyi Mountains, Fujian, China. Biodiversity Science (生物多样性), 121, 63-74. (in Chinese with English abstract) |
[61] | Zhu Y (朱源), Kang MY (康慕谊), Jiang Y (江源), Liu QR (刘全儒) (2008) Altitudinal pattern of species diversity in woody plant communities of Mountain Helan, northwestern China. Acta Phytoecologica Sinica (植物生态学报), 32, 574-581. (in Chinese with English abstract) |
[1] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[2] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[3] | 王丽媛, 胡慧建, 姜杰, 胡一鸣. 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子[J]. 生物多样性, 2024, 32(1): 23026-. |
[4] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[5] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[6] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[7] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[8] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[9] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[10] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[11] | 王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745. |
[12] | 郑进凤, 唐蓉, 贺霜, 陈月红, 伍素, 张凯, 徐雨, 邹晓. 贵州花溪大学城破碎化林地鸟类多样性与嵌套分布格局[J]. 生物多样性, 2021, 29(5): 661-667. |
[13] | 黄小波, 郎学东, 李帅锋, 刘万德, 苏建荣. 生态系统多功能性的指标选择与驱动因子: 研究现状与展望[J]. 生物多样性, 2021, 29(12): 1673-1686. |
[14] | 胡亮. 福建平潭岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2021, 29(10): 1403-1410. |
[15] | 房丽君, 张宇军, 邢小宇. 秦岭国家植物园蝴蝶群落结构与多样性[J]. 生物多样性, 2020, 28(8): 965-972. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn