
生物多样性 ›› 2025, Vol. 33 ›› Issue (10): 25236. DOI: 10.17520/biods.2025236 cstr: 32101.14.biods.2025236
李尚炫1,2, 明姣1,2, 陈根娟1,2, 武杰1,2, 张丙昌1,2,*(
)
收稿日期:2025-06-20
接受日期:2025-09-08
出版日期:2025-10-20
发布日期:2025-11-21
通讯作者:
* E-mail: zhangbch@sxnu.edu.cn基金资助:
Shangxuan Li1,2, Jiao Ming1,2, Genjuan Chen1,2, Jie Wu1,2, Bingchang Zhang1,2,*(
)
Received:2025-06-20
Accepted:2025-09-08
Online:2025-10-20
Published:2025-11-21
Contact:
* E-mail: zhangbch@sxnu.edu.cnSupported by:摘要:
土壤细菌作为生物结皮微生物群落的核心组分, 在干旱半干旱生态系统中具有不可替代的功能。晋西北风沙区是典型的生态脆弱区, 该区域植被和生物结皮协同作用对土壤细菌群落多样性的影响尚不明确。本研究选取该区域3种不同植被(草地、灌木、林地)下的藻结皮和藓结皮, 通过高通量测序和环境因子分析, 探究了植被与生物结皮协同作用下土壤细菌群落特征及相关的关键环境因子。结果表明: (1)植被与生物结皮共同影响土壤养分, 灌木和林地对土壤养分具有明显的富集作用; 生物结皮演替显著提高土壤养分含量, 但土壤pH值明显降低; (2)生物结皮类型与植被类型均影响细菌群落的α多样性、关键物种的相对丰度及群落结构。在相同结皮类型中, 林地的Chao1指数、Shannon多样性指数均高于草地和灌木; 且草地与灌木的细菌门和目的相对丰度具有显著差异(P < 0.05)。(3) Mantel检验结果表明土壤pH值、总有机碳和全氮与细菌群落的相异度显著相关(P < 0.05), α多样性与总有机碳和铵态氮呈极显著相关(P < 0.01)。晋西北风沙区植被与生物结皮共同影响土壤养分, 进而间接影响细菌多样性。土壤pH值、总有机碳、全氮及铵态氮是影响细菌群落的关键因子。本研究结果丰富了生物结皮细菌多样性的认识, 为深入理解该地区生态系统生物多样性与功能稳定性提供科学证据。
李尚炫, 明姣, 陈根娟, 武杰, 张丙昌 (2025) 晋西北风沙区植被与生物结皮协同发育对土壤细菌群落的影响. 生物多样性, 33, 25236. DOI: 10.17520/biods.2025236.
Shangxuan Li, Jiao Ming, Genjuan Chen, Jie Wu, Bingchang Zhang (2025) Effects of synergistic development between vegetation and biological soil crusts on soil bacterial communities in the wind-sandy area of northwestern Shanxi Province. Biodiversity Science, 33, 25236. DOI: 10.17520/biods.2025236.
| 样地名称 Sample plot | 海拔 Altitude (m) | 植被盖度 Vegetation cover | 优势植物种类 Dominant plant species | 结皮类型 Crust type |
|---|---|---|---|---|
| 草地 Grassland | 1,479.8 | 80%-90% | 猪毛蒿、赖草、鸡冠茶、百里香、隐子草 Artemisia scoparia, Leymus secalinus, Sibbaldianthe bifurca, Thymus mongolicus, and Cleistogenes serotina | 藻结皮、藓结皮 Algal crusts, moss crusts |
| 灌木 Shrubland | 1,057.7-1,097.2 | 60%-70% | 黑沙蒿、白莲蒿、华北米蒿、猪毛蒿、长芒草、尖裂假还阳参、赖草、硬质早熟禾、远志、河朔荛花 Artemisia ordosica, A. gmelinii, A. giraldii, A. scoparia, Stipa bungeana, Crepidiastrum sonchifolium, Leymus secalinus, Poa sphondylode, Polygala tenuifolia, and Wikstroemia chamaedaphne | 藻结皮、藓结皮 Algal crusts, moss crusts |
| 林地 Woodland | 856.7-1,485.2 | 80%-90% | 油松、杨树、花苜蓿、苜蓿、蔓黄芪、牛枝子、锦鸡儿 Pinus tabuliformis, Populus przewalskii, Medicago ruthenica, M. sativa, Phyllolobium chinense, Lespedeza potaninii, and Caragana sinica | 藻结皮、藓结皮 Algal crusts, moss crusts |
表1 本研究样地基本信息表(平均值 ± 标准差)
Table 1 Basic information of sample plots in this study (mean ± SD)
| 样地名称 Sample plot | 海拔 Altitude (m) | 植被盖度 Vegetation cover | 优势植物种类 Dominant plant species | 结皮类型 Crust type |
|---|---|---|---|---|
| 草地 Grassland | 1,479.8 | 80%-90% | 猪毛蒿、赖草、鸡冠茶、百里香、隐子草 Artemisia scoparia, Leymus secalinus, Sibbaldianthe bifurca, Thymus mongolicus, and Cleistogenes serotina | 藻结皮、藓结皮 Algal crusts, moss crusts |
| 灌木 Shrubland | 1,057.7-1,097.2 | 60%-70% | 黑沙蒿、白莲蒿、华北米蒿、猪毛蒿、长芒草、尖裂假还阳参、赖草、硬质早熟禾、远志、河朔荛花 Artemisia ordosica, A. gmelinii, A. giraldii, A. scoparia, Stipa bungeana, Crepidiastrum sonchifolium, Leymus secalinus, Poa sphondylode, Polygala tenuifolia, and Wikstroemia chamaedaphne | 藻结皮、藓结皮 Algal crusts, moss crusts |
| 林地 Woodland | 856.7-1,485.2 | 80%-90% | 油松、杨树、花苜蓿、苜蓿、蔓黄芪、牛枝子、锦鸡儿 Pinus tabuliformis, Populus przewalskii, Medicago ruthenica, M. sativa, Phyllolobium chinense, Lespedeza potaninii, and Caragana sinica | 藻结皮、藓结皮 Algal crusts, moss crusts |
| 组别 Group | 藻结皮 Algal crusts | 藓结皮 Moss crusts | ||||
|---|---|---|---|---|---|---|
| 草地 Grassland | 灌木 Shrubland | 林地 Woodland | 草地 Grassland | 灌木 Shrubland | 林地 Woodland | |
| pH值 pH value | 8.01 ± 0.14a | 7.89 ± 0.05ab | 8.07 ± 0.14a | 7.81 ± 0.08ab | 7.66 ± 0.124ab | 7.49 ± 0.049b |
| 总有机碳 Total organic carbon (g/kg) | 0.96 ± 0.05b | 0.9 ± 0.07b | 1.29 ± 0.08b | 2.04 ± 0.19a | 2.09 ± 0.20a | 2.06 ± 0.14a |
| 速效磷 Available phosphorus (mg/kg) | 4.58 ± 0.98bc | 7.08 ± 0.75abc | 3.46 ± 0.62c | 9.64 ± 1.17ab | 12.47 ± 2.44a | 8.27 ± 0.92abc |
| 速效钾 Available potassium (mg/kg) | 137.4 ± 2.54c | 220 ± 17.36ab | 169.05 ± 5.89bc | 215.8 ± 12.08ab | 274.5 ± 23.89a | 243 ± 14.05a |
| 总氮 Total nitrogen (g/kg) | 0.52 ± 0.03a | 0.59 ± 0.07a | 0.62 ± 0.06a | 0.96 ± 0.16b | 1.28 ± 0.20a | 1.41 ± 0.07a |
| 总磷 Total phosphorus (g/kg) | 0.54 ± 0.01a | 0.58 ± 0.02a | 0.55 ± 0.05a | 0.56 ± 0.02a | 0.62 ± 0.02a | 0.53 ± 0.02a |
| 总钾 Total potassium (g/kg) | 22.34 ± 0.21a | 22.61 ± 0.29a | 24.24 ± 1.49a | 20.78 ± 0.24a | 21.55 ± 0.37a | 21.59 ± 0.16a |
| 铵态氮 Ammonia nitrogen (mg/kg) | 0.07 ± 0.01a | 0.16 ± 0.031a | 0.05 ± 0.01a | 0.10 ± 0.02a | 0.06 ± 0.01a | 0.15 ± 0.06a |
| 硝态氮 Nitrate nitrogen (mg/kg) | 0.26 ± 0.02b | 4.17 ± 0.51a | 3.91 ± 0.46a | 3.09 ± 1.04a | 3.53 ± 0.72a | 4.51 ± 0.08a |
表2 不同植被类型下生物结皮的理化性质(平均值 ± 标准差)
Table 2 Physicochemical properties of biological soil crusts under different vegetation types (mean ± SE)
| 组别 Group | 藻结皮 Algal crusts | 藓结皮 Moss crusts | ||||
|---|---|---|---|---|---|---|
| 草地 Grassland | 灌木 Shrubland | 林地 Woodland | 草地 Grassland | 灌木 Shrubland | 林地 Woodland | |
| pH值 pH value | 8.01 ± 0.14a | 7.89 ± 0.05ab | 8.07 ± 0.14a | 7.81 ± 0.08ab | 7.66 ± 0.124ab | 7.49 ± 0.049b |
| 总有机碳 Total organic carbon (g/kg) | 0.96 ± 0.05b | 0.9 ± 0.07b | 1.29 ± 0.08b | 2.04 ± 0.19a | 2.09 ± 0.20a | 2.06 ± 0.14a |
| 速效磷 Available phosphorus (mg/kg) | 4.58 ± 0.98bc | 7.08 ± 0.75abc | 3.46 ± 0.62c | 9.64 ± 1.17ab | 12.47 ± 2.44a | 8.27 ± 0.92abc |
| 速效钾 Available potassium (mg/kg) | 137.4 ± 2.54c | 220 ± 17.36ab | 169.05 ± 5.89bc | 215.8 ± 12.08ab | 274.5 ± 23.89a | 243 ± 14.05a |
| 总氮 Total nitrogen (g/kg) | 0.52 ± 0.03a | 0.59 ± 0.07a | 0.62 ± 0.06a | 0.96 ± 0.16b | 1.28 ± 0.20a | 1.41 ± 0.07a |
| 总磷 Total phosphorus (g/kg) | 0.54 ± 0.01a | 0.58 ± 0.02a | 0.55 ± 0.05a | 0.56 ± 0.02a | 0.62 ± 0.02a | 0.53 ± 0.02a |
| 总钾 Total potassium (g/kg) | 22.34 ± 0.21a | 22.61 ± 0.29a | 24.24 ± 1.49a | 20.78 ± 0.24a | 21.55 ± 0.37a | 21.59 ± 0.16a |
| 铵态氮 Ammonia nitrogen (mg/kg) | 0.07 ± 0.01a | 0.16 ± 0.031a | 0.05 ± 0.01a | 0.10 ± 0.02a | 0.06 ± 0.01a | 0.15 ± 0.06a |
| 硝态氮 Nitrate nitrogen (mg/kg) | 0.26 ± 0.02b | 4.17 ± 0.51a | 3.91 ± 0.46a | 3.09 ± 1.04a | 3.53 ± 0.72a | 4.51 ± 0.08a |
图1 不同植被类型中藻结皮与藓结皮的细菌α多样性(平均值 ± 标准误)。不同小写字母表示多样性指数下不同生境(生物结皮与植被类型组合)中差异显著(P < 0.05)。
Fig. 1 Bacterial α diversity in algal crusts and moss crusts across different vegetation types (mean ± SE). Faith’s PD index, Faith’s phylogenetic diversity index. Different lowercase letters indicate significant differences in the same diversity index among six habitats (combinations of crust types and vegetation types) (P < 0.05).
| 门 Phylum | 藻结皮 Algal crusts (%) | 藓结皮 Moss crusts (%) | ||||
|---|---|---|---|---|---|---|
| 草地 Grassland | 灌木 Shrubland | 林地 Woodland | 草地 Grassland | 灌木 Shrubland | 林地 Woodland | |
| 放线菌门 Actinomycetota | 14.61 ± 0.43b | 28.52 ± 1.08a | 25.80 ± 1.51a | 22.71 ± 0.92a | 28.36 ± 2.97a | 22.45 ± 0.95a |
| 变形菌门 Proteobacteria | 19.54 ± 0.91a | 19.42 ± 2.01a | 23.14 ± 1.54a | 22.83 ± 0.92a | 22.77 ± 1.58a | 21.28 ± 1.00a |
| 蓝细菌门 Cyanobacteriota | 16.68 ± 0.89a | 10.02 ± 0.72b | 11.49 ± 0.85b | 5.01 ± 0.50c | 2.86 ± 0.27c | 3.38 ± 0.23c |
| 拟杆菌门 Bacteroidota | 8.81 ± 0.87a | 6.18 ± 1.00b | 5.85 ± 0.41b | 7.97 ± 0.70ab | 9.45 ± 0.31a | 6.98 ± 0.34ab |
| 绿弯菌门 Chloroflexota | 6.32 ± 0.89ab | 9.27 ± 0.84a | 5.91 ± 0.74b | 7.77 ± 0.88ab | 6.21 ± 0.35ab | 7.34 ± 0.56ab |
| 酸杆菌门 Acidobacteriota | 5.21 ± 0.83c | 5.04 ± 0.77c | 5.66 ± 0.51bc | 7.92 ± 0.66ab | 7.23 ± 0.61bc | 9.89 ± 0.44a |
| 浮霉菌门 Planctomycetota | 7.59 ± 1.32a | 4.07 ± 0.32b | 4.41 ± 0.31b | 6.96 ± 0.95a | 5.39 ± 0.31ab | 5.70 ± 0.40ab |
| 芽单胞菌门 Gemmatimonadota | 7.71 ± 0.70ab | 4.64 ± 0.24b | 5.06 ± 0.48b | 9.95 ± 3.51a | 4.06 ± 0.36b | 4.11 ± 0.32b |
| 芽孢杆菌门 Bacillota | 0.87 ± 0.79c | 1.31 ± 0.12bc | 2.99 ± 0.21c | 1.05 ± 0.04c | 4.80 ± 0.66a | 6.21 ± 0.60a |
| 粘球菌门 Myxococcota | 3.67 ± 0.93a | 2.12 ± 0.44a | 2.57 ± 0.34a | 4.44 ± 0.83a | 3.76 ± 0.77a | 2.90 ± 0.27a |
表3 生物结皮在不同植被下的优势细菌门相对丰度(平均值 ± 标准误)
Table 3 Relative abundance of dominant bacterial phylum in biological soil crusts under different vegetation types (mean ± SE)
| 门 Phylum | 藻结皮 Algal crusts (%) | 藓结皮 Moss crusts (%) | ||||
|---|---|---|---|---|---|---|
| 草地 Grassland | 灌木 Shrubland | 林地 Woodland | 草地 Grassland | 灌木 Shrubland | 林地 Woodland | |
| 放线菌门 Actinomycetota | 14.61 ± 0.43b | 28.52 ± 1.08a | 25.80 ± 1.51a | 22.71 ± 0.92a | 28.36 ± 2.97a | 22.45 ± 0.95a |
| 变形菌门 Proteobacteria | 19.54 ± 0.91a | 19.42 ± 2.01a | 23.14 ± 1.54a | 22.83 ± 0.92a | 22.77 ± 1.58a | 21.28 ± 1.00a |
| 蓝细菌门 Cyanobacteriota | 16.68 ± 0.89a | 10.02 ± 0.72b | 11.49 ± 0.85b | 5.01 ± 0.50c | 2.86 ± 0.27c | 3.38 ± 0.23c |
| 拟杆菌门 Bacteroidota | 8.81 ± 0.87a | 6.18 ± 1.00b | 5.85 ± 0.41b | 7.97 ± 0.70ab | 9.45 ± 0.31a | 6.98 ± 0.34ab |
| 绿弯菌门 Chloroflexota | 6.32 ± 0.89ab | 9.27 ± 0.84a | 5.91 ± 0.74b | 7.77 ± 0.88ab | 6.21 ± 0.35ab | 7.34 ± 0.56ab |
| 酸杆菌门 Acidobacteriota | 5.21 ± 0.83c | 5.04 ± 0.77c | 5.66 ± 0.51bc | 7.92 ± 0.66ab | 7.23 ± 0.61bc | 9.89 ± 0.44a |
| 浮霉菌门 Planctomycetota | 7.59 ± 1.32a | 4.07 ± 0.32b | 4.41 ± 0.31b | 6.96 ± 0.95a | 5.39 ± 0.31ab | 5.70 ± 0.40ab |
| 芽单胞菌门 Gemmatimonadota | 7.71 ± 0.70ab | 4.64 ± 0.24b | 5.06 ± 0.48b | 9.95 ± 3.51a | 4.06 ± 0.36b | 4.11 ± 0.32b |
| 芽孢杆菌门 Bacillota | 0.87 ± 0.79c | 1.31 ± 0.12bc | 2.99 ± 0.21c | 1.05 ± 0.04c | 4.80 ± 0.66a | 6.21 ± 0.60a |
| 粘球菌门 Myxococcota | 3.67 ± 0.93a | 2.12 ± 0.44a | 2.57 ± 0.34a | 4.44 ± 0.83a | 3.76 ± 0.77a | 2.90 ± 0.27a |
| 目 Order | 藻结皮 Algal crusts (%) | 藓结皮 Moss crusts (%) | ||||
|---|---|---|---|---|---|---|
| 草地 Grassland | 灌木 Shrubland | 林地 Woodland | 草地 Grassland | 灌木 Shrubland | 林地 Woodland | |
| 根瘤菌目 Rhizobiales | 7.22 ± 0.99c | 7.89 ± 0.51bc | 7.87 ± 0.33bc | 10.03 ± 0.33a | 9.61 ± 0.29ab | 8.52 ± 0.27abc |
| 蓝细菌目 Cyanobacteriales | 12.76 ± 0.75a | 6.93 ± 0.53b | 8.01 ± 1.01b | 3.44 ± 0.39c | 2.32 ± 0.15c | 2.10 ± 0.20c |
| 弗兰克氏菌目 Frankiales | 4.77 ± 0.61bc | 6.96 ± 0.51a | 6.16 ± 0.46ab | 4.76 ± 0.31bc | 4.92 ± 0.48bc | 3.72 ± 0.29c |
| 噬几丁质菌目 Chitinophagales | 4.57 ± 0.45b | 4.01 ± 0.28b | 3.87 ± 0.27b | 5.03 ± 0.33ab | 6.28 ± 0.53a | 5.15 ± 0.23ab |
| 土壤红杆菌目 Solirubrobacterales | 2.39 ± 0.16c | 4.52 ± 0.35ab | 3.83 ± 0.41bc | 4..99 ± 0.26ab | 5.81 ± 0.61a | 4.43 ± 0.32ab |
| 伯克氏菌目 Burkholderiales | 2.90 ± 0.14a | 3.25 ± 0.30a | 4.22 ± 0.35a | 3.90 ± 0.31a | 3.25 ± 0.31a | 3.52 ± 0.26a |
| 丙酸杆菌目 Propionibacteriales | 2.17 ± 0.14b | 3.42 ± 0.37ab | 3.38 ± 0.44ab | 4.52 ± 0.52a | 3.94 ± 0.21a | 2.13 ± 0.15b |
| 微球菌目 Micrococcales | 1.46 ± 0.18b | 5.24 ± 0.68a | 5.32 ± 0.41a | 1.61 ± 0.10b | 2.15 ± 0.21b | 1.49 ± 0.71b |
| 芽单胞菌目 Gemmatimonadales | 3.10 ± 0.32a | 2.88 ± 0.0.36a | 3.18 ± 0.38a | 3.29 ± 0.28a | 2.84 ± 0.32a | 3.27 ± 0.32a |
| 假诺卡氏菌目 Pseudonocardiales | 1.54 ± 0.27b | 1.85 ± 0.15b | 2.06 ± 0.18b | 2.03 ± 0.17b | 4.44 ± 0.56a | 3.67 ± 0.33a |
| 暖球菌目 Tepidisphaerales | 5.67 ± 0.19a | 2.50 ± 0.24bc | 1.95 ± 0.14c | 3.12 ± 0.29b | 1.97 ± 0.18c | 2.50 ± 0.22bc |
| 芽孢杆菌目 Bacillales | 0.30 ± 0.02c | 0.55 ± 0.06c | 1.33 ± 0.23c | 0.41 ± 0.04c | 4.03 ± 0.22b | 6.07 ± 0.39a |
| 热微菌目 Thermomicrobiales | 1.48 ± 0.13b | 2.54 ± 0.31a | 2.14 ± 0.16ab | 2.30 ± 0.33ab | 2.29 ± 0.26ab | 2.54 ± 0.19a |
| 长微菌目 Longimicrobiales | 4.54 ± 0.58b | 1.73 ± 0.14c | 1.50 ± 0.64c | 6.50 ± 0.22a | 1.32 ± 0.09c | 0.87 ± 0.20c |
| 小单孢菌目 Micromonosporales | 0.77 ± 0.28b | 1.31 ± 0.32b | 0.89 ± 0.14b | 2.22 ± 0.30b | 4.07 ± 0.68a | 2.42 ± 0.32b |
表4 在不同植被类型下生物结皮的优势细菌目相对丰度(平均值 ± 标准误)
Table 4 Relative abundance of dominant bacterial orders in biological soil crusts under different vegetation types (mean ± SE)
| 目 Order | 藻结皮 Algal crusts (%) | 藓结皮 Moss crusts (%) | ||||
|---|---|---|---|---|---|---|
| 草地 Grassland | 灌木 Shrubland | 林地 Woodland | 草地 Grassland | 灌木 Shrubland | 林地 Woodland | |
| 根瘤菌目 Rhizobiales | 7.22 ± 0.99c | 7.89 ± 0.51bc | 7.87 ± 0.33bc | 10.03 ± 0.33a | 9.61 ± 0.29ab | 8.52 ± 0.27abc |
| 蓝细菌目 Cyanobacteriales | 12.76 ± 0.75a | 6.93 ± 0.53b | 8.01 ± 1.01b | 3.44 ± 0.39c | 2.32 ± 0.15c | 2.10 ± 0.20c |
| 弗兰克氏菌目 Frankiales | 4.77 ± 0.61bc | 6.96 ± 0.51a | 6.16 ± 0.46ab | 4.76 ± 0.31bc | 4.92 ± 0.48bc | 3.72 ± 0.29c |
| 噬几丁质菌目 Chitinophagales | 4.57 ± 0.45b | 4.01 ± 0.28b | 3.87 ± 0.27b | 5.03 ± 0.33ab | 6.28 ± 0.53a | 5.15 ± 0.23ab |
| 土壤红杆菌目 Solirubrobacterales | 2.39 ± 0.16c | 4.52 ± 0.35ab | 3.83 ± 0.41bc | 4..99 ± 0.26ab | 5.81 ± 0.61a | 4.43 ± 0.32ab |
| 伯克氏菌目 Burkholderiales | 2.90 ± 0.14a | 3.25 ± 0.30a | 4.22 ± 0.35a | 3.90 ± 0.31a | 3.25 ± 0.31a | 3.52 ± 0.26a |
| 丙酸杆菌目 Propionibacteriales | 2.17 ± 0.14b | 3.42 ± 0.37ab | 3.38 ± 0.44ab | 4.52 ± 0.52a | 3.94 ± 0.21a | 2.13 ± 0.15b |
| 微球菌目 Micrococcales | 1.46 ± 0.18b | 5.24 ± 0.68a | 5.32 ± 0.41a | 1.61 ± 0.10b | 2.15 ± 0.21b | 1.49 ± 0.71b |
| 芽单胞菌目 Gemmatimonadales | 3.10 ± 0.32a | 2.88 ± 0.0.36a | 3.18 ± 0.38a | 3.29 ± 0.28a | 2.84 ± 0.32a | 3.27 ± 0.32a |
| 假诺卡氏菌目 Pseudonocardiales | 1.54 ± 0.27b | 1.85 ± 0.15b | 2.06 ± 0.18b | 2.03 ± 0.17b | 4.44 ± 0.56a | 3.67 ± 0.33a |
| 暖球菌目 Tepidisphaerales | 5.67 ± 0.19a | 2.50 ± 0.24bc | 1.95 ± 0.14c | 3.12 ± 0.29b | 1.97 ± 0.18c | 2.50 ± 0.22bc |
| 芽孢杆菌目 Bacillales | 0.30 ± 0.02c | 0.55 ± 0.06c | 1.33 ± 0.23c | 0.41 ± 0.04c | 4.03 ± 0.22b | 6.07 ± 0.39a |
| 热微菌目 Thermomicrobiales | 1.48 ± 0.13b | 2.54 ± 0.31a | 2.14 ± 0.16ab | 2.30 ± 0.33ab | 2.29 ± 0.26ab | 2.54 ± 0.19a |
| 长微菌目 Longimicrobiales | 4.54 ± 0.58b | 1.73 ± 0.14c | 1.50 ± 0.64c | 6.50 ± 0.22a | 1.32 ± 0.09c | 0.87 ± 0.20c |
| 小单孢菌目 Micromonosporales | 0.77 ± 0.28b | 1.31 ± 0.32b | 0.89 ± 0.14b | 2.22 ± 0.30b | 4.07 ± 0.68a | 2.42 ± 0.32b |
图2 不同植被类型中生物结皮细菌群落结构的主坐标分析(PCoA)
Fig. 2 Principal coordinates analysis (PCoA) of bacterial community structure in biological soil crusts across different vegetation types
图3 细菌群落与土壤环境因子的关系。优势细菌门与土壤环境因子的Spearman相关性分析(a)、Mantel检验分析(b)和冗余分析(RDA) (c)。pH: pH值; TOC: 总有机碳; AK: 有效钾; TN: 总氮; TP: 总磷; TK: 总钾; AP: 有效磷; NH4+-N: 铵态氮; NO3--N: 硝态氮。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 3 Relationships between bacterial communities and soil environmental factors. (a) Spearman correlation analysis; (b) Mantel test analysis; (c) Redundancy analysis (RDA). pH, pH value; TOC, Total organic carbon; AK, Available potassium; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AP, Available phosphorus; NH4+-N, Ammonium nitrogen; NO3--N, Nitrate nitrogen. * P < 0.05; ** P < 0.01; *** P < 0.001.
| [1] | Bao SD (2000) Soil Agricultural Chemistry Analysis, 3rd edn. China Agricultural Press, Beijing. (in Chinese) |
| [鲍士旦 (2000) 土壤农化分析(第3版). 中国农业出版社, 北京.] | |
| [2] | Belnap J, Weber B, Büdel B (2016) Biological soil crusts as an organizing principle in drylands. In: Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber B, Büdel B, Belnap J), pp. 3-13. Springer, Cham. |
| [3] | Cheng C, Li YJ, Zhang YD, Gao M, Li XN (2020) Effects of moss crusts on soil nutrients and ecological stoichiometry characteristics in karst rocky desertification region. Acta Ecologica Sinica, 40, 9234-9244. (in Chinese with English abstract) |
| [程才, 李玉杰, 张远东, 高敏, 李晓娜 (2020) 石漠化地区苔藓结皮对土壤养分及生态化学计量特征的影响. 生态学报, 40, 9234-9244.] | |
| [4] |
Ge HT, Fang LF, Huang XH, Wang JL, Chen WY, Liu Y, Zhang YY, Wang XR, Xu W, He QF, Wang YC (2017) Translating divergent environmental stresses into a common proteome response through the histidine kinase 33 (Hik33) in a model Cyanobacterium. Molecular & Cellular Proteomics, 16, 1258-1274.
DOI URL |
| [5] |
Gonçalves OS, Fernandes AS, Tupy SM, Ferreira TG, Almeida LN, Creevey CJ, Santana MF (2024) Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum. Soil Biology and Biochemistry, 192, 109369.
DOI URL |
| [6] |
He HY, Liu W, Chang ZQ, Hou CM, Sun LW, Chi XL (2024) Effects of biological soil crust succession on soil nutrients, microbial community composition in desert regions. Arid Land Geography, 47, 1724-1734. (in Chinese with English abstract)
DOI |
|
[贺郝钰, 刘蔚, 常宗强, 侯春梅, 孙力炜, 迟秀丽 (2024) 沙区生物土壤结皮演替对表层土壤养分和微生物群落组成的影响. 干旱区地理, 47, 1724-1734.]
DOI |
|
| [7] |
Jin XY, Zhang XC, Jin D, Chen Y, Li JY (2020) Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger Desert. Biodiversity Science, 28, 718-726. (in Chinese with English abstract)
DOI |
|
[靳新影, 张肖冲, 金多, 陈韵, 李靖宇 (2020) 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征. 生物多样性, 28, 718-726.]
DOI |
|
| [8] |
Kaboré OD, Godreuil S, Drancourt M (2020) Planctomycetes as host-associated bacteria: A perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Frontiers in Cellular and Infection Microbiology, 10, 519301.
DOI URL |
| [9] | Kang XH, Liu X, Liu SS, Li YP, Jia TT (2024) Distribution patterns and drivers of soil microbial communities at different spatiotemporal scales: A review. Soils, 56, 689-696. (in Chinese with English abstract) |
| [康小虎, 刘鑫, 刘姗姗, 李玥萍, 贾婷婷 (2024) 不同时空尺度下土壤微生物群落分布及驱动因素研究进展. 土壤, 56, 689-696.] | |
| [10] |
Klarenberg IJ, Keuschnig C, Salazar A, Benning LG, Vilhelmsson O (2023) Moss and underlying soil bacterial community structures are linked to moss functional traits. Ecosphere, 14, e4447.
DOI URL |
| [11] |
Knapp BD, Willis L, Gonzalez C, Vashistha H, Jammal-Touma J, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC (2025) Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nature Microbiology, 10, 185-201.
DOI PMID |
| [12] |
Lan J, Wang S, Wang J, Qi X, Long Q, Huang M (2022) The shift of soil bacterial community after afforestation influence soil organic carbon and aggregate stability in karst region. Frontiers in Microbiology, 13, 901126.
DOI URL |
| [13] | Li EY, Ma XL, Lü J, Ma Y, Lü GH (2021) Microbial community structure and its influencing factors of different salt lakes on the northern slope of Tianshan Mountains, Xinjiang. Acta Ecologica Sinica, 41, 7212-7225. (in Chinese with English abstract) |
| [李二阳, 马雪莉, 吕杰, 马媛, 吕光辉 (2021) 新疆天山北坡不同盐湖微生物菌群结构及其影响因子. 生态学报, 41, 7212-7225.] | |
| [14] | Li XF, Liu LM, Qi X, Zhang JX, Zhao TB, Wang Y, Liu XF, Zhou YB (2014) Land use change dynamics and driving forces of the vulnerable ecological region in northwestern Shanxi Province, China. Journal of Applied Ecology, 25, 2959-2967. (in Chinese with English abstract) |
| [李秀芬, 刘利民, 齐鑫, 张金鑫, 肇同斌, 王一, 刘雪峰, 周永斌 (2014) 晋西北生态脆弱区土地利用动态变化及驱动. 应用生态学报, 25, 2959-2967.] | |
| [15] | Li XR, Zhang YM, Zhao YG (2009) A study of biological soil crusts: Recent development trend and prospect. Advances in Earth Science, 24, 11-24. (in Chinese with English abstract) |
|
[李新荣, 张元明, 赵允格 (2009) 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.]
DOI |
|
| [16] |
Liao C, Long CY, Zhang Q, Cheng XL (2022) Stronger effect of litter quality than micro-organisms on leaf and root litter C and N loss at different decomposition stages following a subtropical land use change. Functional Ecology, 36, 896-907.
DOI URL |
| [17] |
Lu Q, Xiao Y, Lu YJ (2022) Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. Algal Research, 65, 102747
DOI URL |
| [18] | Madigan MT, Martinko JM, Parker J (1997) Brock Biology of Microorganisms (Vol. 11). Upper Saddle River, Prentice Hall, NJ. |
| [19] |
Magoč T, Salzberg SL (2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957-2963.
DOI PMID |
| [20] |
McIntyre RES, Adams MA, Ford DJ, Grierson PF (2009) Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream. Soil Biology and Biochemistry, 41, 92-101.
DOI URL |
| [21] |
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández- Valbuena L, Garcia-Pichel F, Mateo P (2019) Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytologist, 221, 123-141.
DOI PMID |
| [22] |
Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10, 551-562.
DOI PMID |
| [23] | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. |
| [24] | Rojas E, Theriot JA, Huang KC (2014) Response of Escherichia coli growth rate to osmotic shock. Proceedings of the National Academy of Sciences, USA, 111, 7807-7812. |
| [25] |
Shen GC, Tan SS, Sun XY, Chen YW, Li BH (2020) Experimental evidence for the importance of light on understory grass communities in a subtropical forest. Frontiers in Plant Science, 11, 1051.
DOI PMID |
| [26] |
Su YG, Chen YW, Padilla FM, Zhang YM, Huang G (2020) The influence of biocrusts on the spatial pattern of soil bacterial communities: A case study at landscape and slope scales. Soil Biology and Biochemistry, 142, 107721.
DOI URL |
| [27] | Tong YS, Zhang CP, Dong QM, Yang ZZ, Zhang XF, Huo LA, Cao S (2024) Effects of different forms of nitrogen addition on soil physical and chemical properties and microbial community structure of perennial alpine cultivated grassland. Environmental Science, 45, 3595-3604. (in Chinese with English abstract) |
| [童永尚, 张春平, 董全民, 杨增增, 张小芳, 霍丽安, 曹铨 (2024) 不同形态氮添加对多年生高寒栽培草地土壤理化性质和微生物群落结构的影响. 环境科学, 45, 3595-3604.] | |
| [28] |
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM (2021) Novel and conventional isolation techniques to obtain planctomycetes from marine environments. Microorganisms, 9, 2078.
DOI URL |
| [29] |
Wang CJ, Lin WS, Jia SX, Chen SD, Xiong DC, Xu C, Yang ZJ, Liu XF, Yang YS (2025) Effects of litter and root inputs on soil microbial community structure in subtropical natural and plantation forests. Plant and Soil, 513, 823-838.
DOI |
| [30] | Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB (2016) Progress in the ecology of soil acidobacteria phylum bacteria. Biotechnology Bulletin, 32(2), 14-20. (in Chinese with English abstract) |
|
[王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 (2016) 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32(2), 14-20.]
DOI |
|
| [31] | Wang H, Zhang FF, Chen L, Sun T, Zhang WW (2024) Modifying the photosynthesis and carbon fixation of cyanobacteria based on synthetic biology. Chinese Bulletin of Life Sciences, 36, 1250-1259. (in Chinese with English abstract) |
| [汪浩, 张芬芳, 陈磊, 孙韬, 张卫文 (2024) 基于合成生物学改造蓝细菌的光合碳固定. 生命科学, 36, 1250-1259.] | |
| [32] | Wang XY, Chen XS, Ding QP, Zhao XY, Wang XJ, Ma ZW, Lian J (2018) Vegetation and soil environmental factor characteristics, and their relationship at different desertification stages: A case study in the Minqin desert-oasis ecotone. Acta Ecologica Sinica, 38, 1569-1580. (in Chinese with English abstract) |
| [王新源, 陈翔舜, 丁乾平, 赵学勇, 王小军, 马仲武, 连杰 (2018) 不同荒漠化阶段植被生态特征对土壤环境因子的响应——以民勤荒漠绿洲过渡带为例. 生态学报, 38, 1569-1580.] | |
| [33] | Wang YN, Hu YG, Wang ZR, Li YK, Zhang ZH, Zhou HK (2022) Impacts of desertification and artificial revegetation on soil bacterial communities in alpine grassland. Acta Prataculturae Sinica, 31(5), 26-39. (in Chinese with English abstract) |
|
[王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤 (2022) 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响. 草业学报, 31(5), 26-39.]
DOI |
|
| [34] | Wu L (2021) Effects of plants on soil physical and chemical properties and microbial properties in land consolidation. Scientific Journal of Intelligent Systems Research Volume, 3, 206-209. |
| [35] | Xu H, Ding MJ, Zhang H, Zhang YJ, Huang P, Wu YP, Zou TE, Wang NY, Zeng H (2024) Interaction effects of vegetation and soil factors on microbial communities in alpine. Environmental Sciences, 45, 4251-4265. (in Chinese with English abstract) |
| [徐欢, 丁明军, 张华, 张月菊, 黄鹏, 吴宇萍, 邹天娥, 王能玉, 曾欢 (2024) 高寒草原退化过程中植被和土壤因子对微生物群落的交互影响. 环境科学, 45, 4251-4265.] | |
| [36] |
Yang QL, Yang RR, Gao B, Liang YQ, Liu XJ, Li XS, Zhang DY (2023) Metabolomic analysis of the desert moss Syntrichia caninervis provides insights into plant dehydration and rehydration response. Plant and Cell Physiology, 64, 1419-1432.
DOI URL |
| [37] | Zhang BC, Wu ZF, Li B (2021) Progress and prospect of biological soil crusts in Loess Plateau. Acta Pedologica Sinica, 58, 1123-1131. (in Chinese with English abstract) |
| [张丙昌, 武志芳, 李彬 (2021) 黄土高原生物土壤结皮研究进展与展望. 土壤学报, 58, 1123-1131.] | |
| [38] | Zhang QH, Lü J, Ma Y, Li EY, Shen C, Chen J (2024) Microbial community structure and potential function of algal crusts in different regions of Gurbantunggut Desert, Xinjiang, China. Acta Ecologica Sinica, 44, 6317-6330. (in Chinese with English abstract) |
| [张清杭, 吕杰, 马媛, 李二阳, 沈畅, 陈静 (2024) 古尔班通古特沙漠不同区域藻类结皮微生物结构和潜在功能. 生态学报, 44, 6317-6330.] | |
| [39] | Zhang XP, Liu Q, Wang J (2024) Progress on the mechanism of interaction between saline plants and inter-rooted soil microorganisms under saline stress. Chinese Journal of Soil Science, 55, 1191-1200. (in Chinese with English abstract) |
| [张旭萍, 刘强, 王锦 (2024) 盐碱胁迫下盐生植物与根际土壤微生物交互作用机制研究进展. 土壤通报, 55, 1191-1200.] | |
| [40] |
Zhang YJ, Ding MJ, Zhang H, Wang NY, Yu ZP, Xu H, Huang P (2023) Degradation-driven bacterial homogenization closely associated with the loss of soil multifunctionality in alpine meadows. Agriculture, Ecosystems & Environment, 344, 108284.
DOI URL |
| [41] |
Zhang YL, Zhang BC, Zhao K, Li KK, Liu YJ (2023) Variation of bacterial communities and their driving factors in different types of biological soil crusts in Mu Us sandy land. Biodiversity Science, 31, 23027. (in Chinese with English abstract)
DOI |
|
[张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋 (2023) 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子. 生物多样性, 31, 23027.]
DOI |
|
| [42] |
Zhao K, Zhang L, Li KK, Wang F, Zhang BC (2022) A review on autotrophic microorganisms research in dryland soils. Journal of Desert Research, 42(5), 177-186. (in Chinese with English abstract)
DOI |
|
[赵康, 张磊, 李凯凯, 王斐, 张丙昌 (2022) 干旱区土壤自养微生物研究进展. 中国沙漠, 42(5), 177-186.]
DOI |
|
| [43] |
Zhou X, Tahvanainen T, Malard L, Chen L, Pérez-Pérez J, Berninger F (2024) Global analysis of soil bacterial genera and diversity in response to pH. Soil Biology and Biochemistry, 198, 109552.
DOI URL |
| [1] | 宋远昊, 龚吕, 李贲, 胡阳, 李秀珍. 辽河口不同退塘还湿方式对大型底栖动物的影响[J]. 生物多样性, 2025, 33(2): 24316-. |
| [2] | 琚晓千, 田赟, 徐铭泽, 代远萌, 李满乐, 周煜涵, 刘鹏, 贾昕, 查天山. 土壤环境因子对荒漠植物叶性状的驱动机制[J]. 生物多样性, 2025, 33(11): 25158-. |
| [3] | 陈静, 张丙昌, 刘燕晋, 武杰, 赵康, 明姣. 荒漠生物结皮细鞘丝藻类(Leptolyngbya-like)蓝藻多样性[J]. 生物多样性, 2024, 32(9): 24186-. |
| [4] | 魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰. 秦岭火地塘针叶林土壤细菌群落的海拔分布格局[J]. 生物多样性, 2024, 32(9): 24180-. |
| [5] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
| [6] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
| [7] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
| [8] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
| [9] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
| [10] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
| [11] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
| [12] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
| [13] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
| [14] | 吴墨栩, 安明态, 田力, 刘锋. 茂兰喀斯特森林木本植物性系统数量特征及其与环境因子的关系[J]. 生物多样性, 2022, 30(11): 22025-. |
| [15] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn