生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 22674. DOI: 10.17520/biods.2022674
所属专题: 生物入侵
张多鹏1,2, 刘洋1,3, 李正飞1,*(), 葛奕豪1,3, 张君倩1, 谢志才1
收稿日期:
2022-12-09
接受日期:
2023-03-02
出版日期:
2023-08-20
发布日期:
2023-08-14
通讯作者:
*E-mail: lizhengfei@ihb.ac.cn
基金资助:
Duopeng Zhang1,2, Yang Liu1,3, Zhengfei Li1,*(), Yihao Ge1,3, Junqian Zhang1, Zhicai Xie1
Received:
2022-12-09
Accepted:
2023-03-02
Online:
2023-08-20
Published:
2023-08-14
Contact:
*E-mail: lizhengfei@ihb.ac.cn
摘要:
作为长江上游唯一未在干流建坝的一级支流和长江上游珍稀特有鱼类国家级自然保护区的核心区, 赤水河流域孕育和保护了极为丰富的底栖动物多样性。然而对赤水河底栖动物的了解仍不充分, 缺乏涵盖整个流域的连续性、季节性的底栖动物调查。本研究于2019-2021年按季度开展4次调查, 系统评估了赤水河水系底栖动物物种多样性, 更新了物种名录, 甄别出其驱动机制及受胁因素, 并提出相应的保护对策。本次调查共记录底栖动物5门9纲22目86科186属209种。全流域优势种均为昆虫类, 如蜉蝣属一种(Ephemera sp.)、扁蜉属一种(Heptagenia sp.)、河花蜉属一种(Polamanthus sp.)、四节蜉属一种(Baetis sp.)、潜水蝽科一种(Naucoridae sp.)和多足摇蚊属一种(Polypedilum sp.)。春季底栖动物的物种丰富度、Shannon-Wiener多样性指数、Simpson优势度指数、Pielou均匀度指数均高于其他季节。上游的密度、物种丰富度、Shannon-Wiener多样性指数和Simpson优势度指数均明显高于中下游。主坐标分析显示, 不同季节和不同河段间底栖动物群落结构差异显著。冗余分析结果显示, 底栖动物的分布主要受底质、海拔、流速、溶解氧、NH4+-N和大尺度空间因子PCNM1、PCNM2、PCNM3、PCNM6的驱动。方差分解结果表明, 环境过滤对群落结构的影响大于空间因子(随机效应)。流域内的多重人类活动(如支流的梯级电站、采矿业、土地开发利用、酿酒业、旅游业等)严重影响底栖动物多样性。建议采取退耕还林、维持水文的自然节律、管控采矿业和酿酒业、优化防治外来入侵种等一系列对策, 建立有效的预测和风险评估机制。
张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才 (2023) 长江上游支流赤水河流域底栖动物物种多样性与保护对策. 生物多样性, 31, 22674. DOI: 10.17520/biods.2022674.
Duopeng Zhang, Yang Liu, Zhengfei Li, Yihao Ge, Junqian Zhang, Zhicai Xie (2023) Species diversity and recommended rehabilitative strategies of benthic macroinvertebrate in the Chishui River, a tributary of the Upper Yangtze River. Biodiversity Science, 31, 22674. DOI: 10.17520/biods.2022674.
上游 Upstream | 中游 Midstream | 下游 Downstream | F | P | |
---|---|---|---|---|---|
河宽 Channel width (m) | 36.07 ± 21.55 | 77.69 ± 51.53 | 193.80 ± 43.15 | 18.869 | < 0.001* |
流速 Current velocity (m/s) | 1.04 ± 0.39 | 1.32 ± 0.78 | 0.70 ± 0.60 | 2.795 | 0.074 |
水深 Water depth (m) | 0.26 ± 0.21 | 0.36 ± 0.14 | 0.63 ± 0.59 | 5.434 | 0.009* |
海拔 Altitude (m) | 920.55 ± 463.32 | 314.68 ± 51.60 | 213.55 ± 7.93 | 46.367 | < 0.001* |
大石 Boulder (%) | 0.57 ± 0.18 | 0.31 ± 0.37 | 0.01 ± 0.03 | 16.172 | < 0.001* |
卵石 Pebble (%) | 0.34 ± 0.89 | 0.04 ± 0.04 | 0.01 ± 0.03 | 6.319 | 0.004* |
沙 Grit (%) | 0.46 ± 0.13 | 0.25 ± 0.23 | 0.19 ± 0.38 | 6.036 | 0.005* |
淤泥 Silt (%) | 0.21 ± 0.18 | 0.62 ± 0.41 | 0.89 ± 0.22 | 14.465 | < 0.001* |
铵氮 Ammonia nitrogen (mg/L) | 0.19 ± 0.06 | 0.21 ± 0.12 | 0.19 ± 0.07 | 0.262 | 0.771 |
总氮 Total nitrogen (mg/L) | 3.65 ± 0.85 | 3.24 ± 0.19 | 2.71 ± 0.59 | 3.952 | 0.028* |
总磷 Total phosphate (mg/L) | 0.05 ± 0.02 | 0.06 ± 0.02 | 0.05 ± 0.01 | 0.319 | 0.729 |
高锰酸盐指数 CODMN (mg/L) | 1.78 ± 0.39 | 2.91 ± 0.78 | 3.58 ± 0.74 | 24.169 | < 0.001* |
电导率 Conductivity (μS/cm) | 447.43 ± 164.49 | 590.49 ± 34.42 | 402.01 ± 193.23 | 2.664 | 0.083 |
溶解氧 Dissolved oxygen (mg/L) | 15.08 ± 1.68 | 13.50 ± 0.75 | 12.03 ± 1.76 | 9.309 | < 0.001* |
pH | 7.96 ± 0.41 | 8.04 ± 0.11 | 7.95 ± 0.07 | 0.358 | 0.701 |
氧化还原电位 Oxidation-reduction potential (mV) | 73.32 ± 31.37 | 38.95 ± 20.36 | 42.79 ± 21.34 | 5.273 | < 0.001* |
表1 赤水河不同河段环境因子的均值和标准差
Table 1 Mean value and standard deviation of local environmental variables in the Chishui River
上游 Upstream | 中游 Midstream | 下游 Downstream | F | P | |
---|---|---|---|---|---|
河宽 Channel width (m) | 36.07 ± 21.55 | 77.69 ± 51.53 | 193.80 ± 43.15 | 18.869 | < 0.001* |
流速 Current velocity (m/s) | 1.04 ± 0.39 | 1.32 ± 0.78 | 0.70 ± 0.60 | 2.795 | 0.074 |
水深 Water depth (m) | 0.26 ± 0.21 | 0.36 ± 0.14 | 0.63 ± 0.59 | 5.434 | 0.009* |
海拔 Altitude (m) | 920.55 ± 463.32 | 314.68 ± 51.60 | 213.55 ± 7.93 | 46.367 | < 0.001* |
大石 Boulder (%) | 0.57 ± 0.18 | 0.31 ± 0.37 | 0.01 ± 0.03 | 16.172 | < 0.001* |
卵石 Pebble (%) | 0.34 ± 0.89 | 0.04 ± 0.04 | 0.01 ± 0.03 | 6.319 | 0.004* |
沙 Grit (%) | 0.46 ± 0.13 | 0.25 ± 0.23 | 0.19 ± 0.38 | 6.036 | 0.005* |
淤泥 Silt (%) | 0.21 ± 0.18 | 0.62 ± 0.41 | 0.89 ± 0.22 | 14.465 | < 0.001* |
铵氮 Ammonia nitrogen (mg/L) | 0.19 ± 0.06 | 0.21 ± 0.12 | 0.19 ± 0.07 | 0.262 | 0.771 |
总氮 Total nitrogen (mg/L) | 3.65 ± 0.85 | 3.24 ± 0.19 | 2.71 ± 0.59 | 3.952 | 0.028* |
总磷 Total phosphate (mg/L) | 0.05 ± 0.02 | 0.06 ± 0.02 | 0.05 ± 0.01 | 0.319 | 0.729 |
高锰酸盐指数 CODMN (mg/L) | 1.78 ± 0.39 | 2.91 ± 0.78 | 3.58 ± 0.74 | 24.169 | < 0.001* |
电导率 Conductivity (μS/cm) | 447.43 ± 164.49 | 590.49 ± 34.42 | 402.01 ± 193.23 | 2.664 | 0.083 |
溶解氧 Dissolved oxygen (mg/L) | 15.08 ± 1.68 | 13.50 ± 0.75 | 12.03 ± 1.76 | 9.309 | < 0.001* |
pH | 7.96 ± 0.41 | 8.04 ± 0.11 | 7.95 ± 0.07 | 0.358 | 0.701 |
氧化还原电位 Oxidation-reduction potential (mV) | 73.32 ± 31.37 | 38.95 ± 20.36 | 42.79 ± 21.34 | 5.273 | < 0.001* |
物种 Taxa | 春季 Spring (%) | 夏季 Summer (%) | 秋季 Autumn (%) | 冬季 Winter (%) |
---|---|---|---|---|
霍甫水丝蚓 Limnodrilus hoffmeisteri | 6.95 | |||
四节蜉属一种 Baetis sp. | 10.19 | 23.12 | 20.63 | 17.94 |
花翅蜉属一种 Baetiella sp. | 6.61 | |||
柔裳蜉属一种 Habrophlebiodes sp. | 8.34 | |||
小蜉属一种 Ephemerella sp. | 5.17 | |||
扁蜉属一种 Heptagenia sp. | 13.39 | 27.53 | ||
河花蜉属一种 Polamanthus sp. | 11.91 | |||
纹石蛾属一种 Hydropsyche sp. | 6.64 | 14.31 | 15.05 | |
齿斑摇蚊属一种 Stictochironomus sp. | 5.75 | |||
多足摇蚊属一种 Polypedilum sp. | 9.13 | 5.72 |
表2 赤水河不同季节大型底栖动物群落优势种百分比
Table 2 The density percentage of dominant species of benthic macroinvertebrates in each season of the Chishui River
物种 Taxa | 春季 Spring (%) | 夏季 Summer (%) | 秋季 Autumn (%) | 冬季 Winter (%) |
---|---|---|---|---|
霍甫水丝蚓 Limnodrilus hoffmeisteri | 6.95 | |||
四节蜉属一种 Baetis sp. | 10.19 | 23.12 | 20.63 | 17.94 |
花翅蜉属一种 Baetiella sp. | 6.61 | |||
柔裳蜉属一种 Habrophlebiodes sp. | 8.34 | |||
小蜉属一种 Ephemerella sp. | 5.17 | |||
扁蜉属一种 Heptagenia sp. | 13.39 | 27.53 | ||
河花蜉属一种 Polamanthus sp. | 11.91 | |||
纹石蛾属一种 Hydropsyche sp. | 6.64 | 14.31 | 15.05 | |
齿斑摇蚊属一种 Stictochironomus sp. | 5.75 | |||
多足摇蚊属一种 Polypedilum sp. | 9.13 | 5.72 |
物种 Taxa | 全流域 Chishui River (%) | 上游 Upstream (%) | 中游 Midstream (%) | 下游 Downstream (%) |
---|---|---|---|---|
蜉蝣属一种 Ephemera sp. | 8.09 | 11.39 | ||
扁蜉属一种 Heptagenia sp. | 7.78 | 10.34 | ||
河花蜉属一种 Polamanthus sp. | 6.62 | 9.91 | ||
四节蜉属一种 Baetis sp. | 6.70 | 6.98 | 12.36 | |
似动蜉属一种 Cinygmula sp. | 7.39 | |||
潜水蝽科一种 Naucoridae sp. | 6.62 | 7.39 | 8.13 | |
多足摇蚊属一种 Polypedilum sp. | 6.55 | 16.37 | 15.99 | |
齿斑摇蚊属一种 Stictochironomus sp. | 27.99 | |||
枝长跗摇蚊属一种 Cladotanytarsus sp. | 8.97 | |||
环棱螺属一种 Bellamya sp. | 11.54 | |||
湖球蚬 Sphaerium lacustre | 7.04 |
表3 赤水河不同河段大型底栖动物群落优势种百分比
Table 3 The density percentage of dominant species of benthic macroinvertebrates in each reach of the Chishui River
物种 Taxa | 全流域 Chishui River (%) | 上游 Upstream (%) | 中游 Midstream (%) | 下游 Downstream (%) |
---|---|---|---|---|
蜉蝣属一种 Ephemera sp. | 8.09 | 11.39 | ||
扁蜉属一种 Heptagenia sp. | 7.78 | 10.34 | ||
河花蜉属一种 Polamanthus sp. | 6.62 | 9.91 | ||
四节蜉属一种 Baetis sp. | 6.70 | 6.98 | 12.36 | |
似动蜉属一种 Cinygmula sp. | 7.39 | |||
潜水蝽科一种 Naucoridae sp. | 6.62 | 7.39 | 8.13 | |
多足摇蚊属一种 Polypedilum sp. | 6.55 | 16.37 | 15.99 | |
齿斑摇蚊属一种 Stictochironomus sp. | 27.99 | |||
枝长跗摇蚊属一种 Cladotanytarsus sp. | 8.97 | |||
环棱螺属一种 Bellamya sp. | 11.54 | |||
湖球蚬 Sphaerium lacustre | 7.04 |
物种 Taxa | 河段 Reaches | 指示值 Indicator value | 显著性 P |
---|---|---|---|
蜉蝣属一种 Ephemera sp. | 上游 Upstream | 0.721 | 0.004 |
细蜉属一种 Caenis sp. | 上游 Upstream | 0.520 | 0.013 |
扁蜉属一种 Heptagenia sp. | 上游 Upstream | 0.721 | 0.006 |
小蜉属一种 Ephemerella sp. | 上游 Upstream | 0.632 | 0.004 |
河花蜉属一种 Polamanthus sp. | 上游 Upstream | 0.782 | 0.001 |
亚美蜉属一种 Ameletus sp. | 上游 Upstream | 0.567 | 0.009 |
叉襀属一种 Nemoura sp. | 上游 Upstream | 0.368 | 0.030 |
角石蛾属一种 Stenopsyche sp. | 上游 Upstream | 0.421 | 0.029 |
短脉纹石蛾属一种 Cheumatopsyche sp. | 上游 Upstream | 0.416 | 0.048 |
龙虱科一种 Dytiscidae sp. | 上游 Upstream | 0.421 | 0.024 |
溪泥甲属一种 Oulimnius sp. | 上游 Upstream | 0.545 | 0.015 |
环足摇蚊属一种 Cricotopus sp. | 上游 Upstream | 0.474 | 0.023 |
大蚊属一种 Tipula sp. | 上游 Upstream | 0.886 | 0.001 |
朝大蚊属一种 Antocha sp. | 上游 Upstream | 0.400 | 0.039 |
虻科一种 Tabanidae sp. | 上游 Upstream | 0.316 | 0.025 |
水螨 Hydrachnellae sp. | 中游 Midstream | 0.059 | 0.032 |
多足摇蚊属一种 Polypedilum sp. | 下游 Downstream | 0.583 | 0.047 |
无距摇蚊属一种 Acalcarella sp. | 下游 Downstream | 0.388 | 0.015 |
齿斑摇蚊属一种 Stictochironomus sp. | 下游 Downstream | 0.587 | 0.005 |
贝蠓 Bezzia sp. | 下游 Downstream | 0.663 | 0.001 |
凸旋螺 Gyraulus convexiusculus | 下游 Downstream | 0.323 | 0.035 |
表4 赤水河不同河段指示物种
Table 4 Indicator taxa of different reaches in the Chishui River
物种 Taxa | 河段 Reaches | 指示值 Indicator value | 显著性 P |
---|---|---|---|
蜉蝣属一种 Ephemera sp. | 上游 Upstream | 0.721 | 0.004 |
细蜉属一种 Caenis sp. | 上游 Upstream | 0.520 | 0.013 |
扁蜉属一种 Heptagenia sp. | 上游 Upstream | 0.721 | 0.006 |
小蜉属一种 Ephemerella sp. | 上游 Upstream | 0.632 | 0.004 |
河花蜉属一种 Polamanthus sp. | 上游 Upstream | 0.782 | 0.001 |
亚美蜉属一种 Ameletus sp. | 上游 Upstream | 0.567 | 0.009 |
叉襀属一种 Nemoura sp. | 上游 Upstream | 0.368 | 0.030 |
角石蛾属一种 Stenopsyche sp. | 上游 Upstream | 0.421 | 0.029 |
短脉纹石蛾属一种 Cheumatopsyche sp. | 上游 Upstream | 0.416 | 0.048 |
龙虱科一种 Dytiscidae sp. | 上游 Upstream | 0.421 | 0.024 |
溪泥甲属一种 Oulimnius sp. | 上游 Upstream | 0.545 | 0.015 |
环足摇蚊属一种 Cricotopus sp. | 上游 Upstream | 0.474 | 0.023 |
大蚊属一种 Tipula sp. | 上游 Upstream | 0.886 | 0.001 |
朝大蚊属一种 Antocha sp. | 上游 Upstream | 0.400 | 0.039 |
虻科一种 Tabanidae sp. | 上游 Upstream | 0.316 | 0.025 |
水螨 Hydrachnellae sp. | 中游 Midstream | 0.059 | 0.032 |
多足摇蚊属一种 Polypedilum sp. | 下游 Downstream | 0.583 | 0.047 |
无距摇蚊属一种 Acalcarella sp. | 下游 Downstream | 0.388 | 0.015 |
齿斑摇蚊属一种 Stictochironomus sp. | 下游 Downstream | 0.587 | 0.005 |
贝蠓 Bezzia sp. | 下游 Downstream | 0.663 | 0.001 |
凸旋螺 Gyraulus convexiusculus | 下游 Downstream | 0.323 | 0.035 |
图3 赤水河流域不同河段大型底栖动物群落密度(A)、生物量(B)、物种丰富度指数(C)、Simpson优势度指数(D)、Shannon-Wiener多样性指数(E)和Pielou均匀度指数(F)。不同字母表示存在显著差异(P < 0.05)。
Fig. 3 Density (A), biomass (B), richness (C), Simpson dominance index (D), Shannon-Wiener diversity index (E) and Pielou evenness index (F) of benthic macroinvertebrates communities in different reaches in the Chishui River basin. Different letters indicate significant differences (P < 0.05).
图4 赤水河流域不同季节大型底栖动物群落密度(A)、生物量(B)、物种丰富度指数(C)、Simpson优势度指数(D)、Shannon-Wiener多样性指数(E)和Pielou均匀度指数(F)。不同字母表示存在显著差异(P < 0.05)。
Fig. 4 Density (A), biomass (B), richness (C), Simpson dominance index (D), Shannon-Wiener diversity index (E) and Pielou evenness index (F) of benthic macroinvertebrates communities in different seasons in the Chishui River basin. Different letters indicate significant differences (P < 0.05).
图5 赤水河流域不同河段(a)和不同季节(b)大型底栖动物PCoA分析图
Fig. 5 PCoA analysis of benthic macroinvertebrates in different reaches (a) and seasons (b) of the Chishui River basin
F | P | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | 第4轴 Axis 4 | |
---|---|---|---|---|---|---|
环境因子 Environmental factors | ||||||
大石 Boulder | 4.77 | 0.001 | -0.76 | -0.59 | 0.04 | 0.25 |
海拔 Altitude | 6.24 | 0.001 | -0.91 | 0.22 | 0.07 | 0.02 |
流速 Velocity | 1.99 | 0.001 | 0.09 | 0.03 | 0.75 | 0.58 |
溶解氧 Dissolved oxygen | 1.91 | 0.001 | 0.37 | -0.80 | 0.08 | -0.16 |
NH4+-N | 1.74 | 0.001 | -0.05 | -0.02 | 0.90 | -0.23 |
空间因子 Spatial factors | ||||||
大尺度 PCNM1 | 5.39 | 0.001 | -0.84 | 0.25 | 0.46 | 0.11 |
大尺度 PCNM2 | 3.17 | 0.001 | 0.53 | 0.31 | 0.79 | -0.01 |
大尺度 PCNM6 | 2.13 | 0.009 | 0.32 | -0.66 | 0.25 | 0.71 |
大尺度 PCNM3 | 2.19 | 0.014 | -0.11 | -0.64 | 0.32 | -0.70 |
表5 赤水河流域底栖动物群落结构与环境因子和空间因子关系的冗余分析(RDA)结果
Table 5 Redundancy analysis relating benthic macroinvertebrate communities to environmental and spatial factors in the Chishui River basin
F | P | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | 第4轴 Axis 4 | |
---|---|---|---|---|---|---|
环境因子 Environmental factors | ||||||
大石 Boulder | 4.77 | 0.001 | -0.76 | -0.59 | 0.04 | 0.25 |
海拔 Altitude | 6.24 | 0.001 | -0.91 | 0.22 | 0.07 | 0.02 |
流速 Velocity | 1.99 | 0.001 | 0.09 | 0.03 | 0.75 | 0.58 |
溶解氧 Dissolved oxygen | 1.91 | 0.001 | 0.37 | -0.80 | 0.08 | -0.16 |
NH4+-N | 1.74 | 0.001 | -0.05 | -0.02 | 0.90 | -0.23 |
空间因子 Spatial factors | ||||||
大尺度 PCNM1 | 5.39 | 0.001 | -0.84 | 0.25 | 0.46 | 0.11 |
大尺度 PCNM2 | 3.17 | 0.001 | 0.53 | 0.31 | 0.79 | -0.01 |
大尺度 PCNM6 | 2.13 | 0.009 | 0.32 | -0.66 | 0.25 | 0.71 |
大尺度 PCNM3 | 2.19 | 0.014 | -0.11 | -0.64 | 0.32 | -0.70 |
图6 赤水河流域大型底栖动物群落分布与环境因子和空间因子的冗余分析。PCNM 1、PCNM 2、PCNM 3和PCNM 6为大尺度空间因子。
Fig. 6 Redundancy analysis (RDA) ordination plots showing the relationship between benthic macroinvertebrates communities and significant environmental and spatial factors in the Chishui River. PCNM1, PCNM2, PCNM3 and PCNM6 are large-scale spatial factors.
图7 环境因子、空间因子对赤水河流域大型底栖动物群落结构的解释率。*表示存在显著差异(P < 0.05)。
Fig. 7 Benthic macroinvertebrates communities and their environmental and spatial explanations in Chishui River. * indicate significant differences (P < 0.05).
[1] |
Alvarez-Cabria M, Barquín J, Juanes JA (2011) Macroinvertebrate community dynamics in a temperate European Atlantic River. Do they conform to general ecological theory? Hydrobiologia, 658, 277-291.
DOI URL |
[2] | Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ (2013) Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proceedings of the Royal Society B: Biological Sciences, 280, 20131760. |
[3] |
Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68.
DOI URL |
[4] |
Bruckerhoff LA, Gido KB, Estey M, Moore PJ (2021) Disentangling effects of predators and landscape factors as drivers of stream fish community structure. Freshwater Biology, 66, 656-668.
DOI URL |
[5] |
Bunn SE, Edward DH, Loneragan NR (1986) Spatial and temporal variation in the macroinvertebrate fauna of streams of the northern jarrah forest, Western Australia: Community structure. Freshwater Biology, 16, 67-91.
DOI URL |
[6] | Cao WX (2000) Thoughts on the construction of nature reserve for endemic fish in the upper reaches of the Yangtze River and related issues. Resources and Environment in the Yangtze Basin, 9, 131-132. (in Chinese) |
[ 曹文宣 (2000) 长江上游特有鱼类自然保护区的建设及相关问题的思考. 长江流域资源与环境, 9, 131-132.] | |
[7] | Cauvy-Fraunié S, Espinosa R, Andino P, Jacobsen D, Dangles O (2015) Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS ONE, 10, e0136793. |
[8] |
Chave J (2004) Neutral theory and community ecology. Ecology Letters, 7, 241-253.
DOI URL |
[9] | Chen L, Qiu L, Zhai HJ (2011) Research on water resources protection of Chishui River Basin. Yangtze River, 42(2), 67-70. (in Chinese with English abstract) |
[ 陈蕾, 邱凉, 翟红娟 (2011) 赤水河流域水资源保护研究. 人民长江, 42(2), 67-70.] | |
[10] |
Cheng F, Li W, Castello L, Murphy BR, Xie SG (2015) Potential effects of dam cascade on fish: Lessons from the Yangtze River. Reviews in Fish Biology and Fisheries, 25, 569-585.
DOI URL |
[11] |
Corbet PS (1966) Diel periodicities of emergence and oviposition in riverine Trichoptera. The Canadian Entomologist, 98, 1025-1034.
DOI URL |
[12] |
Degani G, Herbst GN, Ortal R, Bromley HJ, Levanon D, Netzer Y, Harari N, Glazman H (1993) Relationship between current velocity, depth and the invertebrate community in a stable river system. Hydrobiologia, 263, 163-172.
DOI URL |
[13] | Earle LF (1995) Seasonal distribution and life cycles of Ephemeroptera. Annals of the Entomological Society of America, 5, 380-391. |
[14] | Epler JH (2001) Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources, Division of Water Quality, North Carolina. |
[15] |
Gan HJ, Zak DR, Hunter MD (2019) Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities. Pedobiologia, 74, 43-53.
DOI URL |
[16] | Guo J, Zhang JE (2014) Research progress on invasion mechanisms of Pomacea canaliculata. Chinese Journal of Ecology, 33, 806-815. (in Chinese with English abstract) |
[ 郭靖, 章家恩 (2014) 福寿螺入侵机制的研究进展. 生态学杂志, 33, 806-815.] | |
[17] |
Heino J, Melo AS, Bini LM, Altermatt F, Al-Shami SA, Angeler DG, Bonada N, Brand C, Callisto M, Cottenie K, Dangles O, Dudgeon D, Encalada A, Göthe E, Grönroos M, Hamada N, Jacobsen D, Landeiro VL, Ligeiro R, Martins RT, Miserendino ML, Rawi CSM, Rodrigues ME, Oliveira RF, Sandin L, Schmera D, Sgarbi LF, Simaika JP, Siqueira T, Thompson RM, Townsend CR (2015) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 5, 1235-1248.
DOI PMID |
[18] |
Jacobsen D (2008) Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia, 154, 795-807.
DOI PMID |
[19] | Jiang XM (2012) Diversity Pattern and Environmental Assessment of Macroinvertebrates in Rivers in Central and Western China. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract) |
[ 蒋小明 (2012) 中西部河流大型无脊椎动物多样性格局及其环境评价. 博士学位论文, 中国科学院水生生物研究所, 武汉.] | |
[20] | Jiang XM, Cheng JL, Xiong J, Zhang E, Xie ZC (2011) Macroinvertebrate community structure and bioassessment of water quality in Pohe stream, one of the headwater streams of Huanggai Lake water-network. Resources and Environment in the Yangtze Basin, 20, 1040-1046. (in Chinese with English abstract) |
[ 蒋小明, 程建丽, 熊晶, 张鹗, 谢志才 (2011) 黄盖湖水系河源区——皤河大型无脊椎动物群落与水质评价. 长江流域资源与环境, 20, 1040-1046.] | |
[21] |
Landeiro VL, Bini LM, Melo AS, Pes AMO, Magnusson WE (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology, 57, 1554-1564.
DOI URL |
[22] | Leps J, Smilauer P (2003) Multivariate Analysis of Ecological Data Using CANOCO. University of Cambridge Press, Cambridge. |
[23] |
Lester SE, Ruttenberg BI, Gaines SD, Kinlan BP (2007) The relationship between dispersal ability and geographic range size. Ecology Letters, 10, 745-758.
DOI PMID |
[24] | Li FQ, Sundermann A, Stoll S, Haase P (2016) A newly developed dispersal metric indicates the succession of benthic invertebrates in restored rivers. Science of the Total Environment, 569/570, 1570-1578. |
[25] |
Li ZF, Jiang XM, Wang J, Meng XL, Zhang JQ, Xie ZC (2022) Species diversity and driving factors of benthic macroinvertebrate assemblages in the middle and lower reaches of the Yarlung Zangbo River. Biodiversity Science, 30, 21431. (in Chinese with English abstract)
DOI |
[ 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才 (2022) 雅鲁藏布江中下游底栖动物物种多样性及其影响因素. 生物多样性, 30, 21431.]
DOI |
|
[26] |
Li ZF, Wang J, Meng XL, Heino J, Sun MQ, Jiang XM, Xie ZC (2019) Disentangling the effects of dispersal mode on the assembly of macroinvertebrate assemblages in a heterogeneous highland region. Freshwater Science, 38, 170-182.
DOI URL |
[27] | Liu MY, Zhang YJ, Chen NF, Ma HN, Zou W (2021) Ecological squeezing effect of the invasive species Pomacea canaliculata on the indigenous species Bellamya purificata. Chinese Journal of Zoology, 56, 663-673. (in Chinese with English abstract) |
[ 刘洺源, 张叶军, 陈乃菲, 马浩楠, 邹伟 (2021) 入侵种小管福寿螺对本土物种梨形环棱螺的生态挤压作用. 动物学杂志, 56, 663-673.] | |
[28] | Liu YY (1979) Economic Fauna of China:Freshwater Mollusk. Science Press, Beijing. (in Chinese) |
[ 刘月英 (1979) 中国经济动物志: 淡水软体动物. 科学出版社, 北京.] | |
[29] | Morse JC, Yang L, Tian L (1994) Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nanjing. |
[30] |
Nelson SM (2011) Response of stream macroinvertebrate assemblages to erosion control structures in a wastewater dominated urban stream in the southwestern U.S. Hydrobiologia, 663, 51-69.
DOI URL |
[31] |
Ormerod SJ, Edwards RW (1987) The ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye in relation to environmental factors. Freshwater Biology, 17, 533-546.
DOI URL |
[32] |
Peeters ETHM, Gylstra R, Vos JH (2004) Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia, 519, 103-115.
DOI URL |
[33] |
Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology, 87, 2614-2625.
DOI PMID |
[34] |
Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
DOI URL |
[35] | Qin Q (2021) Spatial Pattern, Formation Mechanism and Temporal Dynamics of Fish Community in Chishui River. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract) |
[ 秦强 (2021) 赤水河鱼类群落空间格局、群聚形成机制及时间动态研究. 博士学位论文, 中国科学院水生生物研究所, 武汉.] | |
[36] | Ran JC, Meng WP (2018) Discussion on ecological protection strategy of Guizhou Chishui River. Guizhou Forestry Science and Technology, 46(1), 54-60. (in Chinese with English abstract) |
[ 冉景丞, 蒙文萍 (2018) 贵州赤水河流域生态保护策略探讨. 贵州林业科技, 46(1), 54-60.] | |
[37] | Ren HQ, Yuan XZ, Liu H, Zhang YW, Zhou SB (2015) The effects of environment factors on community structure of benthic invertebrate in rivers. Acta Ecologica Sinica, 35, 3148-3156. (in Chinese with English abstract) |
[ 任海庆, 袁兴中, 刘红, 张跃伟, 周上博 (2015) 环境因子对河流底栖无脊椎动物群落结构的影响. 生态学报, 35, 3148-3156.] | |
[38] | Robert D (2016) Ordination and Multivariate Analysis for Ecology. R packge version 1.8-0. https://CARN.R-project.org/package=labdsv. (accessed on 2021-09-21) |
[39] |
Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.
DOI URL |
[40] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688-688.
DOI |
[41] | State Environmental Protection Administration (2002) Analytical Methods for Water and Waste Water Monitoring. China Environmental Science Press, Beijing. (in Chinese) |
[ 国家环境保护总局 (2002) 水和废水监测分析方法. 中国环境科学出版社, 北京.] | |
[42] | Wang J (2018) Diversity of Macroinvertebrates and Health Assessment of River Ecosystem in Chishui River. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. (in Chinese with English abstract) |
[ 王军 (2018) 赤水河大型无脊椎动物多样性与河流生态系统健康评价. 博士学位论文, 中国科学院水生生物研究所, 武汉.] | |
[43] | Wang JC, Wang XH (2011) Chironomid Larvae of Northern China. Yan Shi Press, Beijing. (in Chinese) |
[ 王俊才, 王新华 (2011) 中国北方摇蚊幼虫. 中国言实出版社, 北京.] | |
[44] |
Xing Y, Wu XP, Ouyang S, Zhang JQ, Xu J, Yin SL, Xie ZC (2019) Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system. Biodiversity Science, 27, 648-657. (in Chinese with English abstract)
DOI |
[ 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才 (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27, 648-657.]
DOI |
|
[45] | Xiong J, Jiang XM, Wang CM, Xie ZC, Ao HY, Liu JT (2012) Community variation of macrozoobenthos and bioassessment of Dongqian Lake, Ningbo. Research of Environmental Sciences, 25, 282-289. (in Chinese with English abstract) |
[ 熊晶, 蒋小明, 王丑明, 谢志才, 敖鸿毅, 刘剑彤 (2012) 宁波东钱湖大型底栖动物群落动态及水质生物学评价. 环境科学研究, 25, 282-289.] | |
[46] | Yang LF (2014) The current situations of Baijiu (liquor) industry in Chishui River Basin in Guizhou and analysis of the approaches to its sustainable development. Liquor-Making Science & Technology, (8), 136-138, 142. (in Chinese with English abstract) |
[ 杨丽芳 (2014) 贵州赤水河流域白酒产业经济现况及可持续发展途径分析. 酿酒科技, (8), 136-138, 142.] | |
[47] | Zhang HM (2012) A Taxonomic Study on the Larvae of Heteroptera in China (Insecta: Odonata). PhD dissertation, South China Agricultural University, Guangzhou. (in Chinese with English abstract) |
[ 张浩淼 (2012) 中国差翅亚目稚虫的分类学研究(昆虫纲: 蜻蜓目). 博士学位论文, 华南农业大学, 广州.] | |
[48] | Zhao J, Tang JB, Huang SS, Duan J, Guo XM, Niu DK (2015) Study on the categories of soil erosion of Chishui River Basin and corresponding measures for soil and water conservation. Hubei Agricultural Sciences, 54, 3369-3371. (in Chinese with English abstract) |
[ 赵静, 唐剑波, 黄尚书, 段剑, 郭晓敏, 牛德奎 (2015) 赤水河流域水土流失类型区划分及防治对策. 湖北农业科学, 54, 3369-3371.] | |
[49] | Zheng WH, Qu XD, Zhang Y, Meng W (2011) Habitat suitability of macroinvertebrates in the Taizi River basin, northeast China. Research of Environmental Sciences, 24, 1355-1363. (in Chinese with English abstract) |
[ 郑文浩, 渠晓东, 张远, 孟伟 (2011) 太子河流域大型底栖动物栖境适宜性. 环境科学研究, 24, 1355-1363.] | |
[50] | Zhou CF, Gui H, Zhou KY (2003) Larval key to families of Ephemeroptera from China (Insecta). Journal of Nanjing Normal University (Natural Science Edition), 26(2), 65-68. (in Chinese with English abstract) |
[ 周长发, 归鸿, 周开亚 (2003) 中国蜉蝣目稚虫科检索表(昆虫纲). 南京师大学报(自然科学版), 26(2), 65-68.] |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[7] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[8] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[9] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[10] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[11] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[12] | 冯尔辉, 梁伟诺, 胡亮, 张旭. 海南东寨港国家级自然保护区潮间带蟹类(十足目: 短尾下目)物种多样性[J]. 生物多样性, 2023, 31(9): 23030-. |
[13] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[14] | 梁伟诺, 张旭, 胡亮. 广东东海岛与硇洲岛潮间带蟹类(十足目: 短尾下目)物种多样性及其地理分布[J]. 生物多样性, 2023, 31(9): 23086-. |
[15] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn