生物多样性 ›› 2022, Vol. 30 ›› Issue (8): 22168. DOI: 10.17520/biods.2022168 cstr: 32101.14.biods.2022168
所属专题: 生态文明建设
收稿日期:
2022-04-06
接受日期:
2022-07-04
出版日期:
2022-08-20
发布日期:
2022-08-31
通讯作者:
刘为
作者简介:
* E-mail: liuwei08@caas.cn基金资助:
Received:
2022-04-06
Accepted:
2022-07-04
Online:
2022-08-20
Published:
2022-08-31
Contact:
Wei Liu
摘要:
“碳达峰、碳中和”是中国对世界的庄严承诺, 也是当前指导我国可持续发展的重要战略。碳排放的空间分布表明, 城市及其周边地区是最主要的碳排放区。随着我国的城市化进程不断推进, 如何有效减少城市碳排放、增加碳汇成为关系着双碳战略成效的关键问题。作为城市空间中唯一的自然碳汇, 城市绿地生态系统的固碳增汇作用日益突出。加强城市绿地的碳汇建设, 如果按照传统的人工营建思路, 只种植在当前情景下碳汇能力强的少数植物种则很可能会减少生物多样性。基于植物分配有限资源时存在权衡关系的生态学一般原理, 不仅选取当前情景下碳汇能力强的植物, 还要考虑适应环境变化、在未来环境下碳汇能力强的植物, 以及遭遇极端环境时有一定碳汇能力的植物。在此框架下, 选取恰当的植物多样性组合有望实现更好的城市绿地碳汇功能, 即环境稳定时碳汇能力更强, 环境变化时碳汇能力更稳, 出现极端事件时碳汇损失更小。具体的做法包括: (1)扩展绿地物种库信息, 纳入植物的碳减排能力、适应环境变化能力、应对极端变化能力等信息; (2)考虑植物在碳汇能力与应对气候变化能力之间的权衡关系, 将植物分成不同类型的组, 比如高碳汇低适应、低碳汇高适应; (3)根据不同城市的环境和未来气候变化特点, 因地制宜地选择恰当植物组合营建城市绿地; (4)开展城市绿地建设的全生命周期碳计量, 以近自然方式营建和管养城市绿地, 减少管护过程的碳排放。这些举措有助于实现城市绿地碳汇能力提升与生物多样性保护的双重目标。城市生态系统的结构与功能共赢, 对落实双碳战略和生态文明建设意义重大。
牛铜钢, 刘为 (2022) 双碳战略背景下城市生态系统的碳汇功能与生物多样性可以兼得. 生物多样性, 30, 22168. DOI: 10.17520/biods.2022168.
Tonggang Niu, Wei Liu (2022) The trade-off between biodiversity and carbon sink of urban ecosystem under the carbon peaking and carbon neutrality strategy. Biodiversity Science, 30, 22168. DOI: 10.17520/biods.2022168.
[1] |
Cai BF, Wang JN, Yang SY, Mao XQ, Cao LB (2017) Carbon dioxide emissions from cities in China based on high resolution emission gridded data. Chinese Journal of Population Resources and Environment, 15, 58-70.
DOI URL |
[2] | Delgado-Baquerizo M, Eldridge DJ, Liu YR, Sokoya B, Wang JT, Hu HW, He JZ, Bastida F, Moreno JL, Bamigboye AR, Blanco-Pastor JL, Cano-Díaz C, Illán JG, Makhalanyane TP, Siebe C, Trivedi P, Zaady E, Verma JP, Wang L, Wang JY, Grebenc T, Peñaloza-Bojacá GF, Nahberger TU, Teixido AL, Zhou XQ, Berdugo M, Duran J, Rodríguez A, Zhou XB, Alfaro F, Abades S, Plaza C, Rey A, Singh BK, Tedersoo L, Fierer N (2021) Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 7, eabg5809. |
[3] |
Fang JY (2021) Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 45, 1173-1176. (in Chinese with English abstract)
DOI URL |
[方精云 (2021) 碳中和的生态学透视. 植物生态学报, 45, 1173-1176.]
DOI |
|
[4] |
Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science, 319, 1235-1238.
DOI PMID |
[5] |
Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HLG, Tejada G, Aragão LEOC, Nobre C, Peters W, Marani L, Arai E, Sanches AH, Corrêa SM, Anderson L, von Randow C, Correia CSC, Crispim SP, Neves RAL (2021) Amazonia as a carbon source linked to deforestation and climate change. Nature, 595, 388-393.
DOI URL |
[6] | Guo XY, Cai T, Duan XW, Han YJ, Huang D, Da LJ (2013) Carbon storage and distribution pattern in main economic fruit forest ecosystems in Shanghai, East China. Chinese Journal of Ecology, 32, 2881-2885. (in Chinese with English abstract) |
[郭雪艳, 蔡婷, 段秀文, 韩玉洁, 黄丹, 达良俊 (2013) 上海主要经果林生态系统碳储量及其分布格局. 生态学杂志, 32, 2881-2885.] | |
[7] |
Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194.
DOI URL |
[8] |
Hua FY, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, Miao XR, Wang WY, McEvoy C, Pena-Arancibia JL, Brancalion PHS, Smith P, Edwards DP, Balmford A (2022) The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, doi: 10.1126/science.abl4649.
DOI |
[9] | Huang XR, Su XX, Zhou SYD, Zhu YG, Yang XR (2021) Review on the microorganisms in urban green space and their response to urbanization. Acta Microbiologica Sinica, 61, 3887-3902. (in Chinese with English abstract) |
[黄鑫榕, 苏晓轩, 周曙仡聃, 朱永官, 杨小茹 (2021) 城市绿地微生物及其对城市化的响应. 微生物学报, 61, 3887-3902.] | |
[10] | IPCC (2021) Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[11] |
Jiao NZ (2012) Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump. Scientia Sinica Terrae, 42, 1473-1486. (in Chinese with English abstract)
DOI URL |
[焦念志 (2012) 海洋固碳与储碳——并论微型生物在其中的重要作用. 中国科学: 地球科学, 42, 1473-1486.] | |
[12] |
Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 13630.
DOI PMID |
[13] |
Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI PMID |
[14] |
Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature, 528, 60-68.
DOI URL |
[15] |
Luo SH, Mao QZ, Ma KM, Wu JG (2012) A review of carbon cycling and sequestration in urban soils. Acta Ecologica Sinica, 32, 7177-7189. (in Chinese with English abstract)
DOI URL |
[罗上华, 毛齐正, 马克明, 邬建国 (2012) 城市土壤碳循环与碳固持研究综述. 生态学报, 32, 7177-7189.] | |
[16] |
Mekonnen ZA, Riley WJ, Randerson JT, Grant RF, Rogers BM (2019) Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nature Plants, 5, 952-958.
DOI PMID |
[17] |
Piao SL, Zhang XP, Chen AP, Liu Q, Lian X, Wang XH, Peng SS, Wu XC (2019) The impacts of climate extremes on the terrestrial carbon cycle: A review. Scientia Sinica Terrae, 49, 1321-1334. (in Chinese with English abstract)
DOI URL |
[朴世龙, 张新平, 陈安平, 刘强, 连旭, 王旭辉, 彭书时, 吴秀臣 (2019) 极端气候事件对陆地生态系统碳循环的影响. 中国科学: 地球科学, 49, 1321-1334.] | |
[18] | Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, USA, 114, 9575-9580. |
[19] | Seto KC, Dhakal S, Bigio A, Blanco H, Delgado GC, Dewar D, Huang L, Inaba A, Kansal A, Lwasa S, McMahon JE, Müller DB, Murakami J, Nagendra H, Ramaswami A (2014) Human settlements, infrastructure and spatial planning. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K), pp. 923-1000. Cambridge University Press, Cambridge. |
[20] |
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
DOI URL |
[21] |
Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu HW, Anderson IC, Jeffries TC, Zhou JZ, Singh BK (2016) Microbial regulation of the soil carbon cycle: Evidence from gene-enzyme relationships. The ISME Journal, 10, 2593-2604.
DOI URL |
[22] |
Wang JA, Baccini A, Farina M, Randerson JT, Friedl MA (2021) Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change, 11, 435-441.
DOI URL |
[23] | Wang XH, Zhang GL, Zhang L, Liang J, Zhang Q (2022) Research progress on soil carbon sequestration in urban green space. Landscape Architecture Academic Journal, 39, 18-24. (in Chinese with English abstract) |
[王小涵, 张桂莲, 张浪, 梁晶, 张琪 (2022) 城市绿地土壤固碳研究进展. 园林, 39, 18-24.] | |
[24] |
Yan PB, Yang J (2018) Performances of urban tree species under disturbances in 120 cities in China. Forests, 9, 50.
DOI URL |
[25] |
Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, Peng YF, Zhao X, Wang XP, Hu HF, Chen SP, Huang M, Wen XF, Wang SP, Zhu B, Niu SL, Tang ZY, Liu LL, Fang JY (2022) Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China: Life Sciences, 65, 861-895.
DOI URL |
[26] | Yao N, van den Bosch CCK, Yang J, Devisscher T, Wirtz Z, Jia LM, Duan J, Ma LY (2019) Beijing’s 50 million new urban trees: Strategic governance for large-scale urban afforestation. Urban Forestry & Urban Greening, 44, 126392. |
[27] | Zhou QX, Li XJ, Ouyang SH (2022) Carbon-neutral organisms as the new concept in environmental sciences and research prospects. Journal of Agro-Environment Science, 41, 1-9. (in Chinese with English abstract) |
[周启星, 李晓晶, 欧阳少虎 (2022) 关于“碳中和生物”环境科学的新概念与研究展望. 农业环境科学学报, 41, 1-9.] | |
[28] |
Zhou WQ, Fisher B, Pickett ST (2019) Cities are hungry for actionable ecological knowledge. Frontiers in Ecology and the Environment, 17, 135.
DOI URL |
[1] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[2] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 马尚飞, 龚鑫, 上官华媛, 姚海凤, 王滨, 李志鹏, 孙新. 城市化过程中不同用地类型对土壤真核生物多样性的影响[J]. 生物多样性, 2025, 33(3): 24540-. |
[5] | 刘双祺, 华方圆, 夏舫, 闫亮亮, 于方, 叶红, 彭澎, 张东元, 关雪燕, 付建平, 梁烜, 侯笑如, 李晓阳, 赵欣如. 城市绿地作为迁徙陆鸟中途停歇地的栖息地质量及其受留野措施的影响[J]. 生物多样性, 2024, 32(8): 24046-. |
[6] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[7] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[8] | 李乐, 张承云, 裴男才, 高丙涛, 王娜, 李嘉睿, 武瑞琛, 郝泽周. 基于被动声学监测技术的城市绿地景观格局与鸟类多样性关联分析[J]. 生物多样性, 2024, 32(10): 24296-. |
[9] | 王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放. 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应[J]. 生物多样性, 2023, 31(2): 22294-. |
[10] | 岑渝华, 王鹏, 陈庆春, 张承云, 余上, 胡珂, 刘阳, 肖荣波. 城市绿地动物声景的时空特征及其驱动因素[J]. 生物多样性, 2023, 31(1): 22359-. |
[11] | 史丹阳, 廖书跃, 朱磊, 李彬彬. 鸟撞建筑现象概述及系统性调查案例分析[J]. 生物多样性, 2022, 30(3): 21321-. |
[12] | 黄越, 顾燚芸, 阳文锐, 闻丞. 如何在北京充分实现受胁鸟类栖息地保护?[J]. 生物多样性, 2021, 29(3): 340-350. |
[13] | 邓舒雨, 董向忠, 马明哲, 臧振华, 徐文婷, 赵常明, 谢宗强, 申国珍. 基于森林碳库动态评估神农架国家级自然保护区的保护成效[J]. 生物多样性, 2018, 26(1): 27-35. |
[14] | 王勇, 许洁, 杨刚, 李宏庆, 吴时英, 唐海明, 马波, 王正寰. 城市公共绿地常见木本植物组成对鸟类群落的影响[J]. 生物多样性, 2014, 22(2): 196-207. |
[15] | 赵娟娟, 欧阳志云, 郑华, 徐卫华, 王效科, 倪永明. 北京建成区外来植物的种类构成[J]. 生物多样性, 2010, 18(1): 19-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn