生物多样性 ›› 2021, Vol. 29 ›› Issue (4): 449-455. DOI: 10.17520/biods.2020397
杨国平1, 吴涛2,3,4, 耿云芬2,3,4, 李小双2, 郝佳波2,3,4, 袁春明2,3,4,*()
收稿日期:
2020-10-12
接受日期:
2021-01-14
出版日期:
2021-04-20
发布日期:
2021-04-20
通讯作者:
袁春明
基金资助:
Guoping Yang1, Tao Wu2,3,4, Yunfen Geng2,3,4, Xiaoshuang Li2, Jiabo Hao2,3,4, Chunming Yuan2,3,4,*()
Received:
2020-10-12
Accepted:
2021-01-14
Online:
2021-04-20
Published:
2021-04-20
Contact:
Chunming Yuan
About author:
* E-mail: yuanchunming1017@163.com摘要:
生境的破坏及其片断化是生物多样性丧失的主要原因, 了解生境片断化对植物种群动态的影响十分必要。本文比较分析了不同大小生境片断(5 ha和15 ha)和连续森林中濒危植物景东翅子树(Pterospermum kingtungense)种群的结构与动态, 目的是明确影响景东翅子树种群动态的关键生活史阶段及其种群保护的目标, 为濒危植物种群保护和管理策略的制定提供科学依据。在上述3种生境中分别设立3个50 m × 100 m的1.5 ha固定样地, 调查景东翅子树所有个体的胸径(其中幼苗和幼树为地径)和高度、个体的存活及幼苗的补充情况。基于上述统计参数, 建立预测种群动态的Lefkovitch矩阵模型, 同时应用矩阵模型的弹性分析方法量化种群统计参数对种群增长率的相对贡献。结果表明: (1)在5 ha和15 ha生境片断及连续森林各1.5 ha的样地中, 2018年首次调查到景东翅子树的个体数分别为34、82和88株, 2019年复查时的个体数分别为33、82和87株。3种生境中景东翅子树种群的年龄结构均以幼树为主, 但5 ha生境片断森林缺乏幼苗和大树(包括成树和亚成树), 而15 ha生境片断森林幼苗较丰富。(2)在3种生境中景东翅子树种群的增长率等于1 (15 ha生境片断)或趋近于1 (5 ha生境片断和连续森林), 说明不同生境中的景东翅子树种群比较稳定, 这主要是因为其各生活史阶段的存活率均较高。(3)景东翅子树成树和亚成树阶段的存活率对种群增长率的贡献最大, 是影响其种群动态的关键生活史阶段。因此对于大树(包括成树和亚成树)的保护是极度濒危植物景东翅子树种群维持的关键。研究结果揭示小生境片断降低了景东翅子树种群的数量, 改变了种群的结构, 但对种群动态的影响效应尚未显现。因此对于这些小生境片断中濒危植物种群的保护和恢复是可行的, 也是有价值的。
杨国平, 吴涛, 耿云芬, 李小双, 郝佳波, 袁春明 (2021) 生境片断化对濒危植物景东翅子树种群结构与动态的影响. 生物多样性, 29, 449-455. DOI: 10.17520/biods.2020397.
Guoping Yang, Tao Wu, Yunfen Geng, Xiaoshuang Li, Jiabo Hao, Chunming Yuan (2021) Effects of habitat fragmentation on population structure and dynamics of the endangered plant Pterospermum kingtungense. Biodiversity Science, 29, 449-455. DOI: 10.17520/biods.2020397.
生境类型 Habitat type | 地理位置 Geographic location | 海拔 Altitude (m) | 土壤类型 Soil type | 林冠高度 Canopy height (m) | 郁闭度 Canopy density | 样方数 No. of plots |
---|---|---|---|---|---|---|
5 ha生境片断 5-ha fragmented habitat | 100°41′ E, 24°38′ N | 1,440 | 黄壤 Yellow soil | 20 | 0.85 | 3 |
15 ha生境片断 15-ha fragmented habitat | 101°05′ E, 24°17′ N | 1,352 | 红壤 Red soil | 12 | 0.70 | 3 |
连续森林 Continuous forest | 100°40′ E, 24°38′ N | 1,485 | 黄壤 Yellow soil | 20 | 0.92 | 2 |
100°38′ E, 24°43′ N | 1,430 | 黄壤 Yellow soil | 18 | 0.90 | 1 |
表1 不同生境景东翅子树种群样地情况
Table 1 Sampling plots of the investigated Pterospermum kingtungense populations in different habitats
生境类型 Habitat type | 地理位置 Geographic location | 海拔 Altitude (m) | 土壤类型 Soil type | 林冠高度 Canopy height (m) | 郁闭度 Canopy density | 样方数 No. of plots |
---|---|---|---|---|---|---|
5 ha生境片断 5-ha fragmented habitat | 100°41′ E, 24°38′ N | 1,440 | 黄壤 Yellow soil | 20 | 0.85 | 3 |
15 ha生境片断 15-ha fragmented habitat | 101°05′ E, 24°17′ N | 1,352 | 红壤 Red soil | 12 | 0.70 | 3 |
连续森林 Continuous forest | 100°40′ E, 24°38′ N | 1,485 | 黄壤 Yellow soil | 20 | 0.92 | 2 |
100°38′ E, 24°43′ N | 1,430 | 黄壤 Yellow soil | 18 | 0.90 | 1 |
图1 景东翅子树种群生活史。图中数字1-5分别代表景东翅子树生活史的5个阶段, F为繁殖率, Gi,i+1表示一个调查时间段内(本调查为2018-2019年)一个个体在生活史阶段i存活并进入到下一个生活史阶段i + 1的概率, Si,i表示一个个体存活并留存在生活史阶段i的概率。
Fig. 1 Life history model of Pterospermum kingtungense populations. The figures represent the different stages (1, seedling; 2, sapling; 3, small tree; 4, subadult; 5, adult), F, Fertility; Gi,i+1, Probability of survival and growth from a give stage to a large one; Si,i, Probability of surviving and remaining in the same stage over the one-year period (2018-2019).
图2 不同生境中景东翅子树种群的年龄结构。(a) 5 ha生境片断; (b) 15 ha生境片断; (c)连续森林。
Fig. 2 Age structure of Pterospermum kingtungense populations in different habitats. (a) 5-ha fragmented habitat; (b) 15-ha fragmented habitat; (c) Continuous forest.
生境 Habitat | 矩阵 Matrix | 特征向量 Eigen vector | 种群增长率 λ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 ha生境片断 5-ha fragmented habitat | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9999 | |||||
0.0000 | 0.8750 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
0.0000 | 0.0417 | 0.5000 | 0.0000 | 0.0000 | 0.0000 | |||||||
0.0000 | 0.0000 | 0.50000 | 1.0000 | 0.0000 | 0.8889 | |||||||
0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1111 | |||||||
15 ha生境片断 15-ha fragmented habitat | 0.8519 | 0.0000 | 0.0000 | 0.0000 | 0.1667 | 0.1618 | 1.0000 | |||||
0.1111 | 0.9667 | 0.0000 | 0.0000 | 0.0000 | 0.5386 | |||||||
0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0959 | |||||||
0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0599 | |||||||
0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1438 | |||||||
连续森林 Continuous forest | 0.3333 | 0.0000 | 0.0000 | 0.0000 | 0.0909 | 0.0387 | 1.0172 | |||||
0.6667 | 0.9730 | 0.0000 | 0.0000 | 0.0000 | 0.5837 | |||||||
0.0000 | 0.0270 | 0.8696 | 0.0000 | 0.0000 | 0.1069 | |||||||
0.0000 | 0.0000 | 0.0435 | 0.8750 | 0.0000 | 0.0327 | |||||||
0.0000 | 0.0000 | 0.0000 | 0.1250 | 1.0000 | 0.2381 |
表2 不同生境中景东翅子树种群转移矩阵
Table 2 Transition matrices of Pterospermum kingtungense populations in different habitats
生境 Habitat | 矩阵 Matrix | 特征向量 Eigen vector | 种群增长率 λ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 ha生境片断 5-ha fragmented habitat | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9999 | |||||
0.0000 | 0.8750 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
0.0000 | 0.0417 | 0.5000 | 0.0000 | 0.0000 | 0.0000 | |||||||
0.0000 | 0.0000 | 0.50000 | 1.0000 | 0.0000 | 0.8889 | |||||||
0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1111 | |||||||
15 ha生境片断 15-ha fragmented habitat | 0.8519 | 0.0000 | 0.0000 | 0.0000 | 0.1667 | 0.1618 | 1.0000 | |||||
0.1111 | 0.9667 | 0.0000 | 0.0000 | 0.0000 | 0.5386 | |||||||
0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0959 | |||||||
0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0599 | |||||||
0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.1438 | |||||||
连续森林 Continuous forest | 0.3333 | 0.0000 | 0.0000 | 0.0000 | 0.0909 | 0.0387 | 1.0172 | |||||
0.6667 | 0.9730 | 0.0000 | 0.0000 | 0.0000 | 0.5837 | |||||||
0.0000 | 0.0270 | 0.8696 | 0.0000 | 0.0000 | 0.1069 | |||||||
0.0000 | 0.0000 | 0.0435 | 0.8750 | 0.0000 | 0.0327 | |||||||
0.0000 | 0.0000 | 0.0000 | 0.1250 | 1.0000 | 0.2381 |
生境 Habitat | 生活史阶段 Life history stage | 幼苗 Seedling | 幼树 Sapling | 小树 Small tree | 亚成树 Subadult tree | 成树 Adult tree |
---|---|---|---|---|---|---|
5 ha生境片断 5-ha fragmented habitat | 幼苗 Seedling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
幼树 Sapling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
小树 Small tree | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
亚成树 Subadult tree | 0.0000 | 0.0000 | 0.0000 | 0.8889 | 0.0000 | |
成树 Adult tree | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1111 | |
15 ha生境片断 15-ha fragmented habitat | 幼苗 Seedling | 0.0058 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
幼树 Sapling | 0.0008 | 0.0226 | 0.0000 | 0.0000 | 0.0000 | |
小树 Small tree | 0.0000 | 0.0000 | 0.0329 | 0.0000 | 0.0000 | |
亚成树 Subadult tree | 0.0000 | 0.0000 | 0.0000 | 0.0128 | 0.0000 | |
成树 Adult tree | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9242 | |
连续森林 Continuous forest | 幼苗 Seedling | 0.0050 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
幼树 Sapling | 0.0102 | 0.2250 | 0.0000 | 0.0000 | 0.0000 | |
小树 Small tree | 0.0000 | 0.0102 | 0.0602 | 0.0000 | 0.0000 | |
亚成树 Subadult tree | 0.0000 | 0.0000 | 0.0102 | 0.0629 | 0.0000 | |
成树 Adult tree | 0.0000 | 0.0000 | 0.0000 | 0.0102 | 0.5958 |
表3 不同生境中景东翅子树种群生活史阶段参数的弹性值矩阵
Table 3 Elasticity matrices of life history stage’s parameters for Pterospermum kingtungense populations in different habitats
生境 Habitat | 生活史阶段 Life history stage | 幼苗 Seedling | 幼树 Sapling | 小树 Small tree | 亚成树 Subadult tree | 成树 Adult tree |
---|---|---|---|---|---|---|
5 ha生境片断 5-ha fragmented habitat | 幼苗 Seedling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
幼树 Sapling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
小树 Small tree | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
亚成树 Subadult tree | 0.0000 | 0.0000 | 0.0000 | 0.8889 | 0.0000 | |
成树 Adult tree | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1111 | |
15 ha生境片断 15-ha fragmented habitat | 幼苗 Seedling | 0.0058 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
幼树 Sapling | 0.0008 | 0.0226 | 0.0000 | 0.0000 | 0.0000 | |
小树 Small tree | 0.0000 | 0.0000 | 0.0329 | 0.0000 | 0.0000 | |
亚成树 Subadult tree | 0.0000 | 0.0000 | 0.0000 | 0.0128 | 0.0000 | |
成树 Adult tree | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9242 | |
连续森林 Continuous forest | 幼苗 Seedling | 0.0050 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
幼树 Sapling | 0.0102 | 0.2250 | 0.0000 | 0.0000 | 0.0000 | |
小树 Small tree | 0.0000 | 0.0102 | 0.0602 | 0.0000 | 0.0000 | |
亚成树 Subadult tree | 0.0000 | 0.0000 | 0.0102 | 0.0629 | 0.0000 | |
成树 Adult tree | 0.0000 | 0.0000 | 0.0000 | 0.0102 | 0.5958 |
[1] |
Aschero V, Morris WF, Vázquez DP, Alvarez JA, Villagra PE (2016) Demography and population growth rate of the tree Prosopis flexuosa with contrasting grazing regimes in the Central Monte Desert. Forest Ecology and Management, 369,184-190.
DOI URL |
[2] | Bruna EM, Fiske IJ, Trager MD (2009) Habitat fragmentation and plant populations: Is what we know demographically irrelevant? Journal of Vegetation Science, 20,569-576. |
[3] |
Caswell H (1984) Optimal life histories and age-specific costs of reproduction: Two extensions. Journal of Theoretical Biology, 107,169-172.
URL PMID |
[4] | Caswell H (1989) Matrix Population Models: Construction Analysis and Interpretation. Sinauer Associates, Sunderland. |
[5] |
Crone EE, Menges ES, Ellis MM, Bell T, Bierzychudek P, Ehrlén J, Kaye TN, Knight TM, Lesica P, Morris WF, Oostermeijer G, Quintana-Ascencio PF, Stanley A, Ticktin T, Valverde T, Williams JL (2011) How do plant ecologists use matrix population models? Ecology Letters, 14,1-8.
DOI URL PMID |
[6] | Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology, 68,1412-1423. |
[7] | de Kroon H, Plaisier A, van Groenendael J, Caswell H (1986) Elasticity: The relative contribution of demographic parameters to population growth rate. Ecology, 67,1427-1431. |
[8] | de Kroon H, van Groenendael J, Ehrlén J (2000) Elasticities: A review of methods and model limitations. Ecology, 81,607-618. |
[9] |
Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81,117-142.
URL PMID |
[10] | Heppell SS, Pfister CA, de Kroon H (2000) Elasticity analysis in population biology: Methods and applications. Ecology, 81,605-606. |
[11] | Hu YJ, Wang SS (1988) A matrix model of population growth of dominant tropical rain forest species Vatica hainanensis in Hainan Island. Acta Ecologica Sinica, 8,104-110. (in Chinese with English abstract) |
[ 胡玉佳, 王寿松 (1988) 海南岛热带雨林优势种——青梅种群增长的矩阵模型. 生态学报, 8,104-110. ] | |
[12] | Huenneke LF, Marks PL (1987) Stem dynamics of the shrub Alnus incana ssp. rugosa: Transition matrix models. Ecology, 68,1234-1242. |
[13] | Kwit C, Horvitz CC, Platt WJ (2004) Conserving slow-growing, long-lived tree species: Input from the demography of a rare understory conifer, Taxus floridana. Conservation Biology, 18,432-443. |
[14] |
Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature, 404,836.
DOI URL PMID |
[15] | Lefkovitch LP (1965) The study of population growth in organisms grouped by stages. Biometrics, 21,1-18. |
[16] | Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrics, 33,183-212. |
[17] | Lin YH, He XB, Tian QJ, Hu WY, Chen L, He P (2011) Numeric dynamics of endangered plant Euonymus chloranthoides populations after habitat fragmentation. Bulletin of Botanical Research, 31,443-450. (in Chinese with English abstract) |
[ 林永慧, 何兴兵, 田启建, 胡文勇, 陈玲, 何平 (2011) 生境破碎化后濒危植物缙云卫矛种群的数量动态. 植物研究, 31,443-450. ] | |
[18] | Luo ZH, Xie YN, Lu ZJ, Luo YY, Luo Y, Wang BY (2011) Survey on populations and distribution of Pterospermum kingtungense in Jingdong County of Yunnan Province. Journal of West China Forestry Science, 40(4),41-47. (in Chinese with English abstract) |
[ 罗忠华, 谢有能, 卢宗菊, 罗有勇, 罗尧, 王博轶 (2011) 景东翅子树的居群结构及分布动态研究. 西部林业科学, 40(4),41-47. ] | |
[19] |
Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution, 28,462-468.
URL PMID |
[20] | Morris WF, Doak DF (2002) Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, MA. |
[21] | Paludo GF, Lauterjung MB, dos Reis MS, Mantovani A (2016) Inferring population trends of Araucaria angustifolia (Araucariaceae) using a transition matrix model in an old-growth forest. Southern Forests, 78,137-143. |
[22] | Quitete Portela RdC, Bruna EM, Santos FAM (2010) Demography of palm species in Brazil’s Atlantic forest: A comparison of harvested and unharvested species using matrix models. Biodiversity and Conservation, 19,2389-2403. |
[23] | Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography—Relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology, 81,465-476. |
[24] | Stubben CJ, Milligan BG (2007) Estimating and analyzing demographic models using the popbio package in R. Journal of Statistical Software, 22(11),1-23. |
[25] | You HM, Koike F (2011) Population dynamics of Oxalis griffithii using the Lefkovitch matrix model. Journal of Zhejiang A & F University, 28(1),66-71. (in Chinese with English abstract) |
[ 尤海梅, 小池文人 (2011) 基于Lefkovitch矩阵模型的山酢浆草种群动态分析. 浙江农林大学学报, 28(1),66-71. ] | |
[26] | Yuan CM, Sima YK, Geng YF, Hao JB, Mao YL, Wei DK, He QJ (2011) Population distribution, age structure and its dynamics feature of endangered species Pterospermum kingtungense. Journal of Northeast Forestry University, 39(5),15-16, 33. (in Chinese with English abstract) |
[ 袁春明, 司马永康, 耿云芬, 郝佳波, 毛云玲, 魏大坤, 何琪金 (2011) 濒危植物景东翅子树种群的分布、年龄结构及其动态特征. 东北林业大学学报, 39(5),15-16, 33. ] | |
[27] | Yuan CM, Sima YK, Geng YF, Hao JB, Mao YL, Luo ZH, Lu CR, Yuan DC (2012) Sprouting traits of endangered plant Pterospermum kingtungense. Journal of Northeast Forestry University, 40(3),113-114, 122. (in Chinese with English abstract) |
[ 袁春明, 司马永康, 耿云芬, 郝佳波, 毛云玲, 罗忠华, 鲁成荣, 袁德财 (2012) 濒危植物景东翅子树的萌生特征. 东北林业大学学报, 40(3),113-114, 122. ] | |
[28] | Yuan CM, Zhang SS, Yang GP, Chen J, Geng YF, Li XS, Yang WZ (2021) Effects of habitat fragmentation on the demography of the critically endangered tree Pterospermum kingtungense (Sterculiaceae) in Yunnan, China. Tropical Ecology, 62,27-33. |
[29] | Zhang DY, Jiang XH (1999) Progress in studies of genetic diversity and conservation biology of endangered plant species. Chinese Biodiversity, 7,31-37. (in Chinese with English abstract) |
[ 张大勇, 姜新华 (1999) 遗传多样性与濒危植物保护生物学研究进展. 生物多样性, 7,31-37. ] |
[1] | 初漠嫣, 梁书洁, 李沛芸, 贾丁, 阿卜杜赛麦提·买尔迪亚力, 李雪阳, 姜楠, 赵翔, 李发祥, 肖凌云, 吕植. 三江源国家级自然保护区内云塔村雪豹种群动态[J]. 生物多样性, 2022, 30(9): 22157-. |
[2] | 徐志峰, 钟问, 张东康, 胡红英. 新疆吉木萨尔县蝴蝶群落多样性[J]. 生物多样性, 2020, 28(8): 993-1002. |
[3] | 洪芳, 向颖, 陈朝阳, 孙亮先, 罗春首, 蒋国芳. 龙栖山自然保护区蝴蝶群落多样性及区系组成[J]. 生物多样性, 2020, 28(8): 1003-1007. |
[4] | 王群, 郭志祥, 李进斌, 王凯博, 吴文伟, 浦恩堂, 马方舟, 何成兴. 云南哀牢山、无量山国家级自然保护区蝴蝶种群动态及多样性[J]. 生物多样性, 2020, 28(8): 921-930. |
[5] | 刘学琴, 贺达汉, 王新谱. 宁夏六盘山国家级自然保护区眼蝶群落多样性[J]. 生物多样性, 2020, 28(8): 973-982. |
[6] | 周浩楠, 赵郁豪, 曾頔, 刘娟, 金挺浩, 丁平. 千岛湖陆桥岛屿地表蚂蚁群落物种多样性空间格局及其影响因素[J]. 生物多样性, 2019, 27(10): 1101-1111. |
[7] | 唐志尧, 蒋旻炜, 张健, 张新悦. 航空航天遥感在物种多样性研究与保护中的应用[J]. 生物多样性, 2018, 26(8): 807-818. |
[8] | 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平. Beta多样性分解: 方法、应用与展望[J]. 生物多样性, 2017, 25(5): 464-480. |
[9] | 韩大勇, 杨允菲. 松嫩草地植物群落物种多度–分布关系及其解释[J]. 生物多样性, 2014, 22(3): 348-357. |
[10] | 杨爱红, 张金菊, 田华, 姚小洪, 黄宏文. 鹅掌楸贵州烂木山居群的微卫星遗传多样性及空间遗传结构[J]. 生物多样性, 2014, 22(3): 375-384. |
[11] | 王霞, 王静, 蒋敬虎, 康明. 观光木片断化居群的遗传多样性和交配系统[J]. 生物多样性, 2012, 20(6): 676-684. |
[12] | 阮咏梅, 张金菊, 姚小洪, 叶其刚. 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构[J]. 生物多样性, 2012, 20(4): 460-469. |
[13] | 陆雪莹, 张道远, 马文宝. 准噶尔无叶豆片断化居群的遗传变异及克隆多样性[J]. 生物多样性, 2007, 15(3): 282-291. |
[14] | 何敬胜, 李作洲, 黄宏文. 濒危物种巴东木莲的等位酶遗传多样性及其保护策略[J]. 生物多样性, 2005, 13(1): 27-35. |
[15] | 丁由中, 王小明. 野生扬子鳄种群动态变化及致危因素[J]. 生物多样性, 2004, 12(3): 324-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn