生物多样性 ›› 2021, Vol. 29 ›› Issue (4): 439-448. DOI: 10.17520/biods.2020399
陈博1,2,3, 江蓝1,2,3, 谢子扬1,2,3, 李阳娣1, 李佳萱1, 李梦佳1,2,3, 魏晨思1,2,3, 邢聪1,2,3, 刘金福1,2,3, 何中声1,2,3,*()
收稿日期:
2020-10-13
接受日期:
2021-02-07
出版日期:
2021-04-20
发布日期:
2021-04-20
通讯作者:
何中声
基金资助:
Bo Chen1,2,3, Lan Jiang1,2,3, Ziyang Xie1,2,3, Yangdi Li1, Jiaxuan Li1, Mengjia Li1,2,3, Chensi Wei1,2,3, Cong Xing1,2,3, Jinfu Liu1,2,3, Zhongsheng He1,2,3,*()
Received:
2020-10-13
Accepted:
2021-02-07
Online:
2021-04-20
Published:
2021-04-20
Contact:
Zhongsheng He
About author:
* E-mail: jxhzs85@126.com摘要:
林窗环境异质性导致群落物种多样性与系统发育多样性(phylogenetic diversity, PD)存在差异, 研究不同大小的林窗中群落的物种多样性与系统发育多样性有助于揭示林下生物多样性的形成及维持机制。本文以格氏栲(Castanopsis kawakamii)天然林为研究对象, 通过Pearson相关性分析与广义线性模型探讨了林窗内物种多样性与系统发育多样性间的相互关系及其环境影响因素。结果表明: (1)大林窗(面积 > 200 m2)植物种类及多度均高于中林窗(50 m2 ≤ 面积 < 100 m2)、小林窗(30 m2 ≤ 面积 < 50 m2)和非林窗(面积 = 100 m2)。大林窗群落系统发育结构趋于发散, 中、小林窗和非林窗群落系统发育结构受到生境过滤和竞争排斥综合作用。(2)群落系统发育多样性指数与物种丰富度(species richness, SR)、Margalef丰富度指数和Shannon-Wiener指数均呈显著正相关, 这与林窗内稀有种种类组成多于优势种有关。(3)林窗面积对物种多样性存在显著正效应; 土壤全氮含量对系统发育多样性和系统发育结构存在显著正效应。林窗形成提高了格氏栲天然林群落物种多样性和系统发育多样性, 林窗面积与土壤全氮共同驱动了格氏栲天然林林窗物种多样性和系统发育多样性的变化。
陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声 (2021) 格氏栲天然林林窗植物物种多样性与系统发育多样性. 生物多样性, 29, 439-448. DOI: 10.17520/biods.2020399.
Bo Chen, Lan Jiang, Ziyang Xie, Yangdi Li, Jiaxuan Li, Mengjia Li, Chensi Wei, Cong Xing, Jinfu Liu, Zhongsheng He (2021) Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamiinatural forest. Biodiversity Science, 29, 439-448. DOI: 10.17520/biods.2020399.
大林窗 Large gap | 中林窗 Middle gap | 小林窗 Small gap | 非林窗 Non-gap | |
---|---|---|---|---|
面积 Area (m2) | 206.17 ± 4.26a | 73.16 ± 1.82b | 33.49 ± 2.33b | 100 ± 0.00ab |
海拔 Elevation (m) | 216.33 ± 5.56ab | 199.33 ± 10.87b | 214.00 ± 8.98ab | 221.17 ± 0.17a |
坡度 Slope (°) | 27.33 ± 3.86ab | 29.33 ± 1.25a | 17.67 ± 7.41bc | 13.23 ± 0.09c |
坡位 Slope position | 2.33 ± 0.47a | 1.67 ± 0.94a | 2.00 ± 0.82a | 1.00 ± 0.01a |
土壤含水量 Soil water content (g/kg) | 302.77 ± 32.7a | 280.72 ± 9.39a | 277.90 ± 11.90a | 269.56 ± 8.86a |
土壤全碳含量 Soil total C content (g/kg) | 17.49 ± 3.71a | 19.19 ± 3.69a | 21.49 ± 5.34a | 23.79 ± 0.48a |
土壤全氮含量 Soil total N content (g/kg) | 0.99 ± 0.07a | 1.05 ± 0.21a | 1.39 ± 0.5a | 1.48 ± 0.04a |
土壤全磷含量 Soil total P content (g/kg) | 0.62 ± 0.39a | 0.67 ± 0.17a | 0.38 ± 0.08a | 0.18 ± 0.01a |
土壤全钾含量 Soil total K content (mg/L) | 30.9 ± 0.62a | 22.3 ± 4.97b | 21.5 ± 0.67b | 27.17 ± 0.82ab |
pH值 pH value | 3.49 ± 0.05a | 3.39 ± 0.04a | 3.52 ± 0.12a | 3.41 ± 0.02a |
水解氮 Hydrolyzed nitrogen (mg/kg) | 124.45 ± 8.00a | 128.01 ± 31.19a | 111.01 ± 9.02a | 136.41 ± 3.01a |
碳氮比 C/N | 17.43 ± 2.71a | 18.08 ± 1.08a | 16.66 ± 1.66a | 16.55 ± 0.83a |
有效磷含量 Available P content (mg/kg) | 5.26 ± 2.70ab | 11.31 ± 8.95ab | 19.57 ± 1.84a | 3.87 ± 0.20b |
年均空气温度 Annual air temperature (℃) | 25.15 ± 0.53a | 25.20 ± 0.07a | 24.91 ± 0.24a | 24.27 ± 0.48a |
年均空气湿度 Annual air humidity (%) | 90.08 ± 1.22a | 85.34 ± 7.14a | 90.14 ± 2.49a | 91.75 ± 0.81a |
年均土壤温度 Annual soil temperature (℃) | 24.38 ± 1.11a | 24.25 ± 0.35a | 23.40 ± 0.49a | 23.01 ± 0.47a |
表1 格氏栲天然林不同大小林窗和非林窗环境因子指标
Table 1 Index of environmental factors of different forest gaps and non-gaps in Castanopsis kawakamiinatual forest
大林窗 Large gap | 中林窗 Middle gap | 小林窗 Small gap | 非林窗 Non-gap | |
---|---|---|---|---|
面积 Area (m2) | 206.17 ± 4.26a | 73.16 ± 1.82b | 33.49 ± 2.33b | 100 ± 0.00ab |
海拔 Elevation (m) | 216.33 ± 5.56ab | 199.33 ± 10.87b | 214.00 ± 8.98ab | 221.17 ± 0.17a |
坡度 Slope (°) | 27.33 ± 3.86ab | 29.33 ± 1.25a | 17.67 ± 7.41bc | 13.23 ± 0.09c |
坡位 Slope position | 2.33 ± 0.47a | 1.67 ± 0.94a | 2.00 ± 0.82a | 1.00 ± 0.01a |
土壤含水量 Soil water content (g/kg) | 302.77 ± 32.7a | 280.72 ± 9.39a | 277.90 ± 11.90a | 269.56 ± 8.86a |
土壤全碳含量 Soil total C content (g/kg) | 17.49 ± 3.71a | 19.19 ± 3.69a | 21.49 ± 5.34a | 23.79 ± 0.48a |
土壤全氮含量 Soil total N content (g/kg) | 0.99 ± 0.07a | 1.05 ± 0.21a | 1.39 ± 0.5a | 1.48 ± 0.04a |
土壤全磷含量 Soil total P content (g/kg) | 0.62 ± 0.39a | 0.67 ± 0.17a | 0.38 ± 0.08a | 0.18 ± 0.01a |
土壤全钾含量 Soil total K content (mg/L) | 30.9 ± 0.62a | 22.3 ± 4.97b | 21.5 ± 0.67b | 27.17 ± 0.82ab |
pH值 pH value | 3.49 ± 0.05a | 3.39 ± 0.04a | 3.52 ± 0.12a | 3.41 ± 0.02a |
水解氮 Hydrolyzed nitrogen (mg/kg) | 124.45 ± 8.00a | 128.01 ± 31.19a | 111.01 ± 9.02a | 136.41 ± 3.01a |
碳氮比 C/N | 17.43 ± 2.71a | 18.08 ± 1.08a | 16.66 ± 1.66a | 16.55 ± 0.83a |
有效磷含量 Available P content (mg/kg) | 5.26 ± 2.70ab | 11.31 ± 8.95ab | 19.57 ± 1.84a | 3.87 ± 0.20b |
年均空气温度 Annual air temperature (℃) | 25.15 ± 0.53a | 25.20 ± 0.07a | 24.91 ± 0.24a | 24.27 ± 0.48a |
年均空气湿度 Annual air humidity (%) | 90.08 ± 1.22a | 85.34 ± 7.14a | 90.14 ± 2.49a | 91.75 ± 0.81a |
年均土壤温度 Annual soil temperature (℃) | 24.38 ± 1.11a | 24.25 ± 0.35a | 23.40 ± 0.49a | 23.01 ± 0.47a |
指数 Index | 大林窗 Large gap | 中林窗 Middle gap | 小林窗 Small gap | 非林窗 Non-gap | |
---|---|---|---|---|---|
系统发育多样性 Phylogenetic diversity | SES.PD | 995.37 ± 173.75a | 904.14 ± 0.82b | 901.02 ± 89.64b | 638.09 ± 74.88b |
NRI | ?0.231 ± 0.213a | ?0.051 ± 0.327a | ?0.283 ± 0.598a | ?0.502 ± 0.380a | |
NTI | ?0.261 ± 0.487a | 0.577 ± 0.546a | 1.391 ± 0.977a | 0.473 ± 0.769a | |
物种多样性 Species diversity | Margalef | 2.72 ± 0.44a | 2.69 ± 0.17b | 2.24 ± 0.42b | 1.98 ± 0.36b |
Simpson | 0.59 ± 0.01a | 0.58 ± 0.01a | 0.48 ± 0.02a | 0.45 ± 0.01a | |
Shannon-Wiener | 1.48 ± 0.23a | 1.59 ± 0.05b | 1.33 ± 0.12b | 1.27 ± 0.08b | |
物种丰富度 Species richness | 11.33 ± 2.28a | 9.01 ± 2.24ab | 8.51 ± 2.37b | 6.67 ± 0.62b | |
Pielou均匀度 Pielou evenness | 0.43 ± 0.08a | 0.53 ± 0.02a | 0.46 ± 0.01a | 0.45 ± 0.01a |
表2 格氏栲天然林不同大小林窗群落系统发育多样性与物种多样性
Table 2 Phylogenetic diversity (PD) and plants taxonomic diversity of different forest gaps in Castanopsis kawakamiinature forest
指数 Index | 大林窗 Large gap | 中林窗 Middle gap | 小林窗 Small gap | 非林窗 Non-gap | |
---|---|---|---|---|---|
系统发育多样性 Phylogenetic diversity | SES.PD | 995.37 ± 173.75a | 904.14 ± 0.82b | 901.02 ± 89.64b | 638.09 ± 74.88b |
NRI | ?0.231 ± 0.213a | ?0.051 ± 0.327a | ?0.283 ± 0.598a | ?0.502 ± 0.380a | |
NTI | ?0.261 ± 0.487a | 0.577 ± 0.546a | 1.391 ± 0.977a | 0.473 ± 0.769a | |
物种多样性 Species diversity | Margalef | 2.72 ± 0.44a | 2.69 ± 0.17b | 2.24 ± 0.42b | 1.98 ± 0.36b |
Simpson | 0.59 ± 0.01a | 0.58 ± 0.01a | 0.48 ± 0.02a | 0.45 ± 0.01a | |
Shannon-Wiener | 1.48 ± 0.23a | 1.59 ± 0.05b | 1.33 ± 0.12b | 1.27 ± 0.08b | |
物种丰富度 Species richness | 11.33 ± 2.28a | 9.01 ± 2.24ab | 8.51 ± 2.37b | 6.67 ± 0.62b | |
Pielou均匀度 Pielou evenness | 0.43 ± 0.08a | 0.53 ± 0.02a | 0.46 ± 0.01a | 0.45 ± 0.01a |
图1 格氏栲天然林群落物种多样性指数与系统发育指数之间的相关分析。红色表示正相关, 蓝色表示负相关。颜色越深, 圆形越大, 表示相关性越强。SES.PD: 标准化系统发育多样性; SR: 物种丰富度; NRI: 净谱系亲缘关系指数; NTI: 净最近种间亲缘关系指数; S-W: Shannon-Wiener指数; *: P < 0.05; **: P < 0.01; ***: P < 0.001。
Fig. 1 Pearson correlation between plants taxonomic and phylogenetic indices of Castanopsis kawakamii forest communities. Red and blue indicated positive and negative correlation, respectively. The darker color and larger circle indicated a stronger correlation. SES.PD, standardization phylogenetic diversity; SR, Species richness;NRI, Net relatedness index;NTI, Net nearest taxa index; S-W, Shannon-Wiener index; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
图2 环境因子对系统发育多样性、系统发育结构和物种多样性指数的影响。线条表示95%置信区间, 红点表示显著正效应(P < 0.05), 灰点表示显著负效应(P < 0.05), 蓝点表示不显著影响。SES.PD: 标准化系统发育多样性; SR: 物种丰富度; NRI: 净谱系亲缘关系指数; NTI: 净最近种间亲缘关系指数; S-W: Shannon-Wiener指数; SIZE: 面积; ELE: 海拔; TC: 全碳; TN: 全氮; TP: 全磷; AP: 有效磷; TK: 全钾; SWC: 土壤含水量; HN: 水解氮: SPO: 坡位; SLOP: 坡度。
Fig. 2 The relative effects of environmental factors on phylogenetic diversity, phylogenetic structure and plants taxonomic index. The lines represent 95% confidence intervals; the red dots represent significant positive effects (P< 0.05), and the gray dots represent significant negative effects (P< 0.05), the blue dots show an insignificant effect. SES.PD, Standardization phylogenetic diversity; SR, Species richness;NRI, Net relatedness index;NTI, Net nearest taxa index; S-W, Shannon-Wiener index; SIZE, Area; ELE, Elevation; TC, Total carbon; TN, Total nitrogen; TP, Total phosphorus; AP, Available phosphorus; TK, Total potassium; SWC, Soil water content; HN, Hydrolyzed nitrogen; SPO, Slope position; SLOP, Slope.
[1] |
Bai JY, Liu WH, Zhao BQ, Zhang Q, Guo DG (2018) Biodiversity of subalpine meadow in Heyeping of Luya Mountain, China. Journal of Applied Ecology, 29,389-396. (in Chinese with English abstract)
DOI URL PMID |
[ 白家烨, 刘卫华, 赵冰清, 张青, 郭东罡 (2018) 芦芽山荷叶坪亚高山草甸生物多样性. 应用生态学报, 29,389-396. ]
PMID |
|
[2] | Bao SD (2000) Soil Agrochemical Analysis, 3rd edn. China Agriculture Press, Beijing. (in Chinese) |
[ 鲍士旦 ( 土壤农化分析 (第三版). 2000) 中国农业出版社, 北京. ] | |
[3] | Buajan S, Liu JF, He ZS, Feng XP, Muhammad A (2018) Effects of gap size and locations on the regeneration of Castanopsis kawakamii in a subtropical natural forest, China. Journal of Tropical Forest Science, 30,39-48. |
[4] | Cao ZW, Fang X, Xiang WH, Lei PF, Peng CH (2020) The vertical differences in the change rates and controlling factors of soil organic carbon and total nitrogen along vegetation restoration in a subtropical area of China. Sustainability, 12,6443. |
[5] | Ci XQ, Li J (2017) Phylogenetic diversity and its application in floristics and biodiversity conservation. Biodiversity Science, 25,175-181. (in Chinese with English abstract) |
[ 慈秀芹, 李捷 (2017) 系统发育多样性在植物区系研究与生物多样性保护中的应用. 生物多样性, 25,175-181. ] | |
[6] | Devagiri GM, Khaple AK, Mohan S, Venkateshamurthy P, Tomar S, Arunkumar AN, Joshi G (2016) Species diversity, regeneration and dominance as influenced by canopy gaps and their characteristics in tropical evergreen forests of Western Ghats, India. Journal of Forestry Research, 27,799-810. |
[7] | Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61,1-10. |
[8] | Finkel M, Fragman O, Nevo E (2013) Biodiversity and interslope divergence of vascular plants caused by sharp microclimatic differences at “Evolution Canyon II”, Lower Nahal Keziv, Upper Galilee, Israel. Israel Journal of Plant Sciences, 49,285-296. |
[9] |
Forest F, Grenyer R, Rouget M, Jonathan Davies T, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445,757-760.
URL PMID |
[10] | Gastauer M, Thiele J, Porembski S, Neri AV (2020) How do altitude and soil properties influence the taxonomic and phylogenetic structure and diversity of Brazilian páramo vegetation? Journal of Mountain Science, 17,1045-1057. |
[11] | Guo XL, Chen L, Zheng RB, Zhang K, Qiu YP, Yue HT (2019) Differences in soil nitrogen availability and transformation in relation to land use in the Napahai Wetland, Southwest China. Journal of Soil Science and Plant Nutrition, 19,92-97. |
[12] | Hammond ME, Pokorný R (2020) Preliminary assessment of effect of disturbance on natural regeneration in gaps of different sizes. Journal of Forest Science, 66,185-196. |
[13] | He ZS, Liu JF, Wu CT, Zheng SQ, Hong W, Su SJ, Wu CZ (2012) Effects of forest gaps on some microclimate variables in Castanopsis kawakamii natural forest. Journal of Mountain Science, 9,706-714. |
[14] | He ZS, Liu JF, Zheng SQ, Hong W, Wu ZY, Xu DW, Wu CZ (2012) Effects of forest gap disturbance on plant species diversity and stability in regeneration layers of Castanopsis kawakamii natural forests. Plant Science Journal, 30,133-140. (in Chinese with English abstract) |
[ 何中声, 刘金福, 郑世群, 洪伟, 吴则焰, 徐道炜, 吴承祯 (2012) 林窗对格氏栲天然林更新层物种多样性和稳定性的影响. 植物科学学报, 30,133-140. ] | |
[15] | Huang JX, Zheng FY, Mi XC (2010) Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China. Chinese Journal of Plant Ecology, 34,309-315. (in Chinese with English abstract) |
[ 黄建雄, 郑凤英, 米湘成 (2010) 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响. 植物生态学报, 34,309-315. ] | |
[16] |
Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science, 283,554-557.
URL PMID |
[17] | Hu LY, Li JS, Wu XP, Yan BQ, Zhu JJ, Luo JW, Xiao NW (2010) Reviews on methods of measuring geometric characteristics of forest gaps involving gap size, gap shape, and the height of canopy trees surrounding the gap. Acta Ecologica Sinica, 30,1911-1919. (in Chinese with English abstract) |
[ 胡理乐, 李俊生, 吴晓莆, 闫伯前, 朱教君, 罗建武, 肖能文 (2010) 林窗几何特征的测定方法. 生态学报, 30,1911-1919. ] | |
[18] | Jin ZL, Liu GP, Zhou MT, Xu WN (2019) Elevation characteristics of grassland community diversity and effect of soil physical and chemical properties in karst mountain grassland. Ecology and Environmental Sciences, 28,661-668. (in Chinese with English abstract) |
[ 金章利, 刘高鹏, 周明涛, 许文年 (2019) 喀斯特山地草地群落多样性海拔特征及土壤理化性质特征. 生态环境学报, 28,661-668. ] | |
[19] | Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, USA, 106,18621-18626. |
[20] | Li Q, Wang B, Deng Y, Lin LX, Dawa ZX, Zhang ZM (2019) Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests. Biodiversity Science, 27,273-285. (in Chinese with English abstract) |
[ 李强, 王彬, 邓云, 林露湘, 达佤扎喜, 张志明 (2019) 西双版纳热带雨林林窗空间分布格局及其特征指数与林窗下植物多样性的相关性. 生物多样性, 27,273-285. ] | |
[21] |
Liu JF, Hong W, Li JQ, Lin RF (2003) Gap edge effect of Castanopsis kawakamii community. Chinese Journal of Applied Ecology, 14,1421-1426. (in Chinese with English abstract)
URL PMID |
[ 刘金福, 洪伟, 李俊清, 林荣福 (2003) 格氏栲群落林窗边缘效应研究. 应用生态学报, 14,1421-1426. ]
PMID |
|
[22] | Lohbeck M, Poorter L, Martínez-Ramos M, Rodriguez-Velázquez J, van Breugel M, Bongers F (2014) Changing drivers of species dominance during tropical forest succession. Functional Ecology, 28,1052-1058. |
[23] | Long C, Yang XB, Long WX, Li DH, Zhou W, Zhang H (2018) Soil nutrients influence plant community assembly in two tropical coastal secondary forests. Tropical Conservation Science, 11,194008291881795. |
[24] | Lu DL, Wang GG, Yu LZ, Zhang T, Zhu JJ (2018) Seedling survival within forest gaps: The effects of gap size, within-gap position and forest type on species of contrasting shade-tolerance in Northeast China. Forestry Research, 91,470-479. |
[25] |
Lu XK, Mo JM, Gilliam FS, Yu GR, Zhang W, Fang YT, Huang J (2011) Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China. Environmental Pollution, 159,2228-2235.
URL PMID |
[26] | Ma KP, Huang JH, Yu SL, Chen LZ (1995) Plant community diversity in Dongling Mountain, Beijing, China: II. Species richness, evenness and species diversities. Acta Ecologica Sinica, 15,268-277. (in Chinese) |
[ 马克平, 黄建辉, 于顺利, 陈灵芝 (1995) 北京东灵山地区植物群落多样性的研究. II. 丰富度、均匀度和物种多样性. 生态学报, 15,268-277. ] | |
[27] | Mao XG, Zhu L, Fan WY (2020) Object-oriented automatic identification of forest gaps using digital orthophoto maps and LiDAR data. Canadian Journal of Remote Sensing, 46,177-192. |
[28] |
Mori AS, Fujii S, Kitagawa R, Koide D (2015) Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities. Oecologia, 178,261-273.
DOI URL PMID |
[29] |
Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16,151-157.
DOI URL PMID |
[30] | Niu KC, Choler P, de Bello F, Mirotchnick N, Du GZ, Sun SC (2014) Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow. Agriculture, Ecosystems and Environment, 182,106-112. |
[31] |
Pio DV, Broennimann O, Barraclough TG, Reeves G, Rebelo AG, Thuiller W, Guisan A, Salamin N (2011) Spatial predictions of phylogenetic diversity in conservation decision making. Conservation Biology, 25,1229-1239.
DOI URL PMID |
[32] | Qian H, Deng T, Jin Y, Mao LF, Zhao D, Richlefs RE (2019) Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proceedings of the National Academy of Sciences, USA, 116,23192-23201. |
[33] | Qian H, Hao ZQ, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7,154-165. |
[34] | Qian H, Jin Y (2014) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9,233-239. |
[35] | Qian H, Zhang J, Sandel B, Jin Y (2020) Phylogenetic structure of angiosperm trees in local forest communities along latitudinal and elevational gradients in eastern North America. Ecography, 43,419-430. |
[36] | R core team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna. |
[37] |
Rho H, Doty SL, Kim SH (2020) Endophytes alleviate the elevated CO2-dependent decrease in photosynthesis in rice, particularly under nitrogen limitation. Journal of Experimental Botany, 71,707-718.
URL PMID |
[38] | Seyednasrollah B, Kumar M (2014) Net radiation in a snow-covered discontinuous forest gap for a range of gap sizes and topographic configurations. Journal of Geophysical Research, 119,10323-10342. |
[39] | Song AY, Liu SR, Shi ZM, Dong LS, Liu JT (2006) Study on species diversity of subalpine meadow communities in Wolong Nature Reserve. Forest Research, 19,767-772. (in Chinese with English abstract) |
[ 宋爱云, 刘世荣, 史作民, 董林水, 刘京涛 (2006) 卧龙自然保护区亚高山草甸植物群落物种多样性研究. 林业科学研究, 19,767-772. ] | |
[40] | Sun Q, Lu JB, Zhang FF, Xu GF (2009) Plant species diversity in relation to island size. Acta Ecologica Sinica, 29,2195-2202. (in Chinese with English abstract) |
[ 孙雀, 卢剑波, 张凤凤, 徐高福 (2009) 植物物种多样性与岛屿面积的关系. 生态学报, 29,2195-2202. ] | |
[41] | Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92,698-715. |
[42] | Terra NAR, Araújo GM, Giroldo AB, Silva PPF (2013) Gap area and tree community regeneration in a tropical semideciduous forest. In: Tropical Forests ( ed ed. Sudarshana P), pp.139-154. IntechOpen, London. |
[43] | Wang JX, Zhang YP (2002) A review on within-gap micro-environmental heterogeneity and species’ response. Journal of Nanjing Forestry University (Natural Sciences Edition), 26(1),69-74. (in Chinese with English abstract) |
[ 王进欣, 张一平 (2002) 林窗微环境异质性及物种的响应. 南京林业大学学报(自然科学版), 26(1),69-74. ] | |
[44] |
Webb CO (2000) Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156,145-155.
DOI URL PMID |
[45] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33,475-505. |
[46] | Yao JY, Wu XB, Sun QH, Wu X, Yao XL, Hao JF, Qi JQ (2018) Effects of canopy gap size on understory species diversity and biomass in a Pinus massoniana plantation in western Sichuan. Chinese Journal of Applied and Environmental Biology, 24,214-220. (in Chinese with English abstract) |
[ 姚俊宇, 伍炫蓓, 孙千惠, 吴霞, 姚小兰, 郝建锋, 齐锦秋 (2018) 林窗大小对川西马尾松人工林林下物种多样性和生物量的影响. 应用与环境生物学报, 24,214-220. ] | |
[47] | Zhang R, Yu FY, Zhou RH, Dong HJ, Wang M, Ye X, Hao JF (2020) Effects of slope position and aspect on structure and species diversity of shrub community in the Jiajin Mountains, Sichuan Province, China. Chinese Journal of Applied Ecology, 31,2507-2514. (in Chinese with English abstract) |
[ 张荣, 余飞燕, 周润惠, 董洪君, 王敏, 叶鑫, 郝建锋 (2020) 坡向和坡位对四川夹金山灌丛群落结构与物种多样性特征的影响. 应用生态学报, 31,2507-2514. ] | |
[48] | Zhang Y, Zhang DJ, Li X, Liu H, Zhang MJ, Yang WQ, Zhang J (2016) Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata. Chinese Journal of Applied Ecology, 27,1116-1124. (in Chinese with English abstract) |
[ 张艳, 张丹桔, 李勋, 刘华, 张明锦, 杨万勤, 张健 (2016) 马尾松人工林林窗边缘效应对樟和红椿凋落叶难降解物质分解的影响. 应用生态学报, 27,1116-11+24. ] |
[1] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[2] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[3] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[4] | 袁桃花, 李美君, 任柳伊, 黄榕鑫, 陈益, 白新祥. 中国野生凤仙花属物种多样性和地理分布数据集[J]. 生物多样性, 2022, 30(5): 22019-. |
[5] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[6] | 张敏, 田春坡, 车先丽, 赵岩岩, 陈什旺, 周霞, 邹发生. 广东省鸟类新记录及其与自然和社会经济因素的关联性[J]. 生物多样性, 2022, 30(5): 21396-. |
[7] | 李海萍, 徐竹青, 龙志航. 大兴安岭地区重点保护和珍稀动物保护空缺分析[J]. 生物多样性, 2022, 30(2): 21294-. |
[8] | 陈胜仙, 张喜亭, 佘丹琦, 张衷华, 周志强, 王慧梅, 王文杰. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J]. 生物多样性, 2022, 30(2): 21115-. |
[9] | 乔江, 贾国清, 周华明, 龚林, 蒋勇, 肖能文, 高晓奇, 温安祥, 王杰. 四川贡嘎山国家级自然保护区鸟兽多样性[J]. 生物多样性, 2022, 30(2): 20395-. |
[10] | 王军, 赵超. 中国菌食性管蓟马物种多样性及分布格局[J]. 生物多样性, 2022, 30(12): 22128-. |
[11] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[12] | 戴梓潇, 陈国科, 张乃莉, 马克平. 中国森林附生维管植物多样性数据集[J]. 生物多样性, 2022, 30(11): 22332-. |
[13] | 陈秋菊, 孙智闲, 李雪健, 张睿, 席蕊, 田晨, 王鑫, 邢迎春, 赵亚辉. 武夷山国家公园及其周边鱼类多样性[J]. 生物多样性, 2022, 30(11): 22260-. |
[14] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
[15] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn