生物多样性 ›› 2020, Vol. 28 ›› Issue (7): 769-778. DOI: 10.17520/biods.2019367
所属专题: 传粉生物学
• 研究报告: 植物多样性 • 下一篇
余元钧1,2, 罗火林1, 刘南南1, 熊冬金1, 罗毅波2, 杨柏云1,*()
收稿日期:
2019-11-20
接受日期:
2020-03-23
出版日期:
2020-07-20
发布日期:
2020-09-29
通讯作者:
杨柏云
作者简介:
* yangboyun@163.com基金资助:
Yuanjun Yu1,2, Huolin Luo1, Nannan Liu1, Dongjin Xiong1, Yibo Luo2, Boyun Yang1,*()
Received:
2019-11-20
Accepted:
2020-03-23
Online:
2020-07-20
Published:
2020-09-29
Contact:
Boyun Yang
摘要:
大黄花虾脊兰(Calanthe sieboldii)是典型的大陆与岛屿间间断分布的兰科物种, 适宜分布气候范围狭窄, 同时依赖特殊的传粉者传粉, 包括黄胸木蜂(Xylocopa appendiculata)、赤足木蜂(X. rufipes)和中华绒木蜂(X. chinensis)等3种木蜂属(Xylocopa)昆虫。本文通过R语言Biomod2程序包建立物种分布模型(SDM), 预测了2050年和2070年时大黄花虾脊兰及其传粉者在3种代表浓度路径(RCP2.6、RCP4.5与RCP8.5)下的分布格局, 以期为该濒危植物的保育提供参考。结果表明: 降水相关变量比温度相关变量对大黄花虾脊兰分布的平均解释率更高, 两者分别为25.4%和13.9%。当前大黄花虾脊兰适生区主要集中在华中和华东地区, 未来适生区的增减主要受到气候情景的影响, 其变化范围为-59.0%到34.7%, 并可能向更高海拔的地区移动; 未来木蜂适生区将净收缩16.4%-19.7%, 且主要向西北和东北移动; 因而两者共同分布的面积占大黄花虾脊兰适生区的比例未来相比当前的90.0%可能下降0.5%-11.4%, 表明大黄花虾脊兰分布可能受到未来气候变化和传粉者分布减少的双重影响, 因此对该物种或类似特化传粉的兰科植物进行保育时应当充分考虑传粉者因素。
余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云 (2020) 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响. 生物多样性, 28, 769-778. DOI: 10.17520/biods.2019367.
Yuanjun Yu, Huolin Luo, Nannan Liu, Dongjin Xiong, Yibo Luo, Boyun Yang (2020) Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China. Biodiversity Science, 28, 769-778. DOI: 10.17520/biods.2019367.
编号 Number | 变量描述 Variable description | 方差膨胀因子 Variance inflation factor | 校正判定系数 Adjusted R2 (%) |
---|---|---|---|
Bio1 | 年平均气温 Annual mean temperature | 2,162.4 | 13.2 |
Bio2 | 昼夜温差月均值 Mean diurnal range | 968.6 | 22.1 |
Bio3 | 等温性 Isothermality | 231.1 | 9.6 |
Bio4 | 温度季节性 Temperature seasonality | 3,230.3 | 19.3 |
Bio5 | 最暖月最高温 Max temperature of warmest month | 27,969.6 | 8.1 |
Bio6 | 最冷月最低温 Min temperature of coldest month | 127,767.6 | 12.9 |
Bio7 | 年均温差 Temperature annual range | 146,914.7 | 21.1 |
Bio8 | 最湿季均温 Mean temperature of wettest quarter | 11.5 | 21.5 |
Bio9 | 最干季均温 Mean temperature of driest quarter | 42.8 | 11.3 |
Bio10 | 最暖季均温 Mean temperature of warmest quarter | 2,009.7 | 6.3 |
Bio11 | 最冷季均温 Mean temperature of coldest quarter | 11,340.5 | 12.5 |
Bio12 | 年均降水量 Annual precipitation | 105.3 | 29.9 |
Bio13 | 最湿月降水量 Precipitation of wettest month | 207.9 | 27.8 |
Bio14 | 最干月降水量 Precipitation of driest month | 332.1 | 26.6 |
Bio15 | 降水季节性 Precipitation seasonality | 20.2 | 17.7 |
Bio16 | 最湿季降水量 Precipitation of wettest quarter | 228.8 | 29.9 |
Bio17 | 最干季降水量 Precipitation of driest quarter | 382.3 | 27.0 |
Bio18 | 最暖季降水量 Precipitation of warmest quarter | 54.5 | 15.4 |
Bio19 | 最冷季降水量 Precipitation of coldest quarter | 40.4 | 28.6 |
表1 大黄花虾脊兰生物气候变量的评估指标(粗体表示变量用于建模)
Table 1 Assessment of biological environmental variables of Calanthe sieboldii (Bold font mean variables used for modeling)
编号 Number | 变量描述 Variable description | 方差膨胀因子 Variance inflation factor | 校正判定系数 Adjusted R2 (%) |
---|---|---|---|
Bio1 | 年平均气温 Annual mean temperature | 2,162.4 | 13.2 |
Bio2 | 昼夜温差月均值 Mean diurnal range | 968.6 | 22.1 |
Bio3 | 等温性 Isothermality | 231.1 | 9.6 |
Bio4 | 温度季节性 Temperature seasonality | 3,230.3 | 19.3 |
Bio5 | 最暖月最高温 Max temperature of warmest month | 27,969.6 | 8.1 |
Bio6 | 最冷月最低温 Min temperature of coldest month | 127,767.6 | 12.9 |
Bio7 | 年均温差 Temperature annual range | 146,914.7 | 21.1 |
Bio8 | 最湿季均温 Mean temperature of wettest quarter | 11.5 | 21.5 |
Bio9 | 最干季均温 Mean temperature of driest quarter | 42.8 | 11.3 |
Bio10 | 最暖季均温 Mean temperature of warmest quarter | 2,009.7 | 6.3 |
Bio11 | 最冷季均温 Mean temperature of coldest quarter | 11,340.5 | 12.5 |
Bio12 | 年均降水量 Annual precipitation | 105.3 | 29.9 |
Bio13 | 最湿月降水量 Precipitation of wettest month | 207.9 | 27.8 |
Bio14 | 最干月降水量 Precipitation of driest month | 332.1 | 26.6 |
Bio15 | 降水季节性 Precipitation seasonality | 20.2 | 17.7 |
Bio16 | 最湿季降水量 Precipitation of wettest quarter | 228.8 | 29.9 |
Bio17 | 最干季降水量 Precipitation of driest quarter | 382.3 | 27.0 |
Bio18 | 最暖季降水量 Precipitation of warmest quarter | 54.5 | 15.4 |
Bio19 | 最冷季降水量 Precipitation of coldest quarter | 40.4 | 28.6 |
图2 概率加权平均整合模型预测大黄花虾脊兰未来不同气候情景下适生区变化
Fig. 2 Predicted suitable habitats change of Calanthe sieboldii by ensembled model of weighted mean of probabilities under different climate change scenarios
气候模式 Climate models | 年代 Time | 气候情景 Scenarios | 当前分布区 Current range (km2) | 丢失 Loss (km2) | 增加 Gain (km2) | 未来分布区 Future range (km2) | 适生区净变化率 Net changes in suitable area (%) |
---|---|---|---|---|---|---|---|
CCSM4 | 2050 | RCP2.6 | 424,281 | 64,782 | 138,733 | 498,232 | 17.4 |
RCP4.5 | 424,281 | 148,569 | 121,545 | 397,257 | -6.4 | ||
RCP8.5 | 424,281 | 242,163 | 100,146 | 282,264 | -33.5 | ||
2070 | RCP2.6 | 424,281 | 40,928 | 188,254 | 571,607 | 34.7 | |
RCP4.5 | 424,281 | 176,090 | 92,036 | 340,227 | -19.8 | ||
RCP8.5 | 424,281 | 303,405 | 79,212 | 200,088 | -52.8 | ||
HadGEM2-AO | 2050 | RCP2.6 | 424,281 | 120,838 | 185,188 | 488,631 | 15.2 |
RCP4.5 | 424,281 | 188,459 | 149,785 | 385,607 | -9.1 | ||
RCP8.5 | 424,281 | 223,285 | 138,763 | 339,759 | -19.9 | ||
2070 | RCP2.6 | 424,281 | 135,160 | 196,285 | 485,406 | 14.4 | |
RCP4.5 | 424,281 | 267,545 | 120,198 | 276,934 | -34.7 | ||
RCP8.5 | 424,281 | 330,576 | 80,286 | 173,991 | -59.0 | ||
FGOALS-g2 | 2050 | RCP2.6 | 424,281 | 94,930 | 153,479 | 482,830 | 13.8 |
RCP4.5 | 424,281 | 148,569 | 121,545 | 397,257 | -6.4 | ||
RCP8.5 | 424,281 | 242,163 | 100,146 | 282,264 | -33.5 | ||
2070 | RCP2.6 | 424,281 | 40,928 | 188,254 | 571,607 | 34.7 | |
RCP4.5 | 424,281 | 176,090 | 92,036 | 340,227 | -19.8 | ||
RCP8.5 | 424,281 | 303,405 | 79,212 | 200,088 | -52.8 |
表2 不同全球气候模式及气候情景下大黄花虾脊兰适生区的变化
Table 2 Changes of suitable areas of Calanthe sieboldii under different global climate models and climatic scenarios
气候模式 Climate models | 年代 Time | 气候情景 Scenarios | 当前分布区 Current range (km2) | 丢失 Loss (km2) | 增加 Gain (km2) | 未来分布区 Future range (km2) | 适生区净变化率 Net changes in suitable area (%) |
---|---|---|---|---|---|---|---|
CCSM4 | 2050 | RCP2.6 | 424,281 | 64,782 | 138,733 | 498,232 | 17.4 |
RCP4.5 | 424,281 | 148,569 | 121,545 | 397,257 | -6.4 | ||
RCP8.5 | 424,281 | 242,163 | 100,146 | 282,264 | -33.5 | ||
2070 | RCP2.6 | 424,281 | 40,928 | 188,254 | 571,607 | 34.7 | |
RCP4.5 | 424,281 | 176,090 | 92,036 | 340,227 | -19.8 | ||
RCP8.5 | 424,281 | 303,405 | 79,212 | 200,088 | -52.8 | ||
HadGEM2-AO | 2050 | RCP2.6 | 424,281 | 120,838 | 185,188 | 488,631 | 15.2 |
RCP4.5 | 424,281 | 188,459 | 149,785 | 385,607 | -9.1 | ||
RCP8.5 | 424,281 | 223,285 | 138,763 | 339,759 | -19.9 | ||
2070 | RCP2.6 | 424,281 | 135,160 | 196,285 | 485,406 | 14.4 | |
RCP4.5 | 424,281 | 267,545 | 120,198 | 276,934 | -34.7 | ||
RCP8.5 | 424,281 | 330,576 | 80,286 | 173,991 | -59.0 | ||
FGOALS-g2 | 2050 | RCP2.6 | 424,281 | 94,930 | 153,479 | 482,830 | 13.8 |
RCP4.5 | 424,281 | 148,569 | 121,545 | 397,257 | -6.4 | ||
RCP8.5 | 424,281 | 242,163 | 100,146 | 282,264 | -33.5 | ||
2070 | RCP2.6 | 424,281 | 40,928 | 188,254 | 571,607 | 34.7 | |
RCP4.5 | 424,281 | 176,090 | 92,036 | 340,227 | -19.8 | ||
RCP8.5 | 424,281 | 303,405 | 79,212 | 200,088 | -52.8 |
图3 概率加权平均整合模型预测当前大黄花虾脊兰与3种木蜂重叠分布区。I: 非适生区; II: 木蜂适生区; III: 大黄花虾脊兰适生区; IV: 共同分布区。
Fig. 3 Predicted current suitable habitats of Calanthe sieboldii and Xylocopa spp. by ensembled model of weighted mean of probabilities. I, Non-suitable habitats; II, suitable habitats of Xylocopa spp.; III, suitable habitats of Calanthe sieboldii; IV, Co-distribution areas.
年代 Time | 气候情景 Scenarios | 大黄花虾脊兰适生区 Suitable areas of Calanthe sieboldii (km2) | 木蜂适生区 Suitable areas of Xylocopa spp. (km2) | 共同分布区 Co-distribution areas (km2) | 共同分布区占大黄花虾脊兰适生区比例 Proportion of co-distribution areas among suitable areas of Calanthe sieboldii (%) |
---|---|---|---|---|---|
当前 Current | - | 424,281 | 3,326,189 | 382,189 | 90.0 |
2050 | RCP2.6 | 498,232 | 2,725,353 | 460,145 | 92.4 |
RCP4.5 | 397,257 | 2,672,072 | 347,495 | 87.5 | |
RCP8.5 | 282,264 | 2,780,090 | 255,319 | 90.4 | |
2070 | RCP2.6 | 571,607 | 2,895,034 | 511,387 | 89.5 |
RCP4.5 | 340,227 | 2,747,877 | 294,294 | 86.5 | |
RCP8.5 | 200,088 | 2,561,470 | 157,259 | 78.6 |
表3 整体模型预测CCSM4气候模式中未来不同气候情景下大黄花虾脊兰与木蜂适生区重叠分布区的变化
Table 3 Predicted habitats overlap change of Calanthe sieboldii and Xylocopa spp. by ensembled model of CCSM4 climate models under different future climate scenarios
年代 Time | 气候情景 Scenarios | 大黄花虾脊兰适生区 Suitable areas of Calanthe sieboldii (km2) | 木蜂适生区 Suitable areas of Xylocopa spp. (km2) | 共同分布区 Co-distribution areas (km2) | 共同分布区占大黄花虾脊兰适生区比例 Proportion of co-distribution areas among suitable areas of Calanthe sieboldii (%) |
---|---|---|---|---|---|
当前 Current | - | 424,281 | 3,326,189 | 382,189 | 90.0 |
2050 | RCP2.6 | 498,232 | 2,725,353 | 460,145 | 92.4 |
RCP4.5 | 397,257 | 2,672,072 | 347,495 | 87.5 | |
RCP8.5 | 282,264 | 2,780,090 | 255,319 | 90.4 | |
2070 | RCP2.6 | 571,607 | 2,895,034 | 511,387 | 89.5 |
RCP4.5 | 340,227 | 2,747,877 | 294,294 | 86.5 | |
RCP8.5 | 200,088 | 2,561,470 | 157,259 | 78.6 |
[1] |
Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980.
DOI URL PMID |
[2] | Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: Prevalence, Kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. |
[3] | Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberlet P, Brochmann C (2012) Genetic consequences of climate change for northern plants. Proceedings of the Royal Society B: Biological Sciences, 279, 2042-2051. |
[4] | Araujo M, Luoto M (2010) The importance of biotic interactions for modelling species distributions under climate change. Global Ecology & Biogeography, 16, 743-753. |
[5] | Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytologist, 145, 367-421. |
[6] | Austin MP (1999) A silent clash of paradigms: Some inconsistencies in community ecology. Oikos, 86, 170-178. |
[7] | Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351-354. |
[8] | Bond WJ, Lawton JH, May RM (1994) Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 344, 83-90. |
[9] | Bourg NA, Mcshea WJ, Gill DE (2005) Putting a CART before the search: Successful habitat prediction for a rare forest herb. Ecology, 86, 2793-2804. |
[10] | Chappell MA (1982) Temperature regulation of carpenter bees (Xylocopa californica) foraging in the Colorado Desert of southern California. Physiological Zoology, 55, 267-280. |
[11] | Chen XC, Xu Y, Xu CH, Yao Y (2014) Assessment of precipitation simulations in China by CMIP5 multi-models. Progressus Inquisitiones De Mutatione Climatis, 10, 217-225. (in Chinese with English abstract) |
[ 陈晓晨, 徐影, 许崇海, 姚遥 (2014) CMIP5 全球气候模式对中国地区降水模拟能力的评估. 气候变化研究进展, 10, 217-225.] | |
[12] | Chen ZD, Ying JS, Lu AM (2012) Disjunct distribution of seed plants between southwestern China and Taiwan Island of China. Chinese Bulletin of Botany, 47, 551-570. (in Chinese with English abstract) |
[ 陈之端, 应俊生, 路安民 (2012) 中国西南地区与台湾种子植物间断分布现象. 植物学报, 47, 551-570.] | |
[13] | Danabasoglu G, Bates SC, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012) The CCSM4 ocean component. Journal of Climate, 25, 1361-1389. |
[14] | DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44, 837-845. |
[15] | Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46. |
[16] | Elith J, Leathwick JR (2009) Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, & Systematics, 40, 677-697. |
[17] | Friedman JH (1991) Multivariate adaptive regression splines. The Annals of Statistics, 19, 1-67. |
[18] | GBIF.org (2019) GBIF occurrence download. https://doi.org/10.15468/dl.8fcyvs/. (accessed on 2019-01-20) |
[19] | Guisan A, Thuiller W (2005) Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993-1009. |
[20] | Guisan A, Thuiller W, Zimmermann NE (2017) Habitat Suitability and Distribution Models: With Applications in R. Cambridge University Press, Cornwall. |
[21] | Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186. |
[22] | Guo C, Lek S, Ye S, Wei L, Liu J, Li Z (2015) Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques. Ecological Modelling, 306, 67-75. |
[23] |
Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
DOI URL PMID |
[24] | Heinrich B, Buchmann SL (1986) Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta. Journal of Comparative Physiology B, 156, 557-562. |
[25] | Heusser LE (2000) Rapid oscillations in western North America vegetation and climate during oxygen isotope stage 5 inferred from pollen data from Santa Barbara Basin (Hole 893A). Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 407-421. |
[26] | Ignasi B, Ascher JS, David W, Danforth BN, Sheila C, Sarah K, Rachael W (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences, USA, 108, 20645-20649. |
[27] |
Jane M, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10, 710-717.
URL PMID |
[28] | Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends in Ecology & Evolution, 15, 140-143. |
[29] |
Jones-Farrand DT, Fearer TM, Thogmartin WE, Thompson FR, Nelson MD, Tirpak JM (2011) Comparison of statistical and theoretical habitat models for conservation planning: The benefit of ensemble prediction. Ecological Applications, 21, 2269-2282.
URL PMID |
[30] | Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. |
[31] | Liaw A, Wiener M (2002) Classification and regression by randomForest. R News, 2, 18-22. |
[32] | Lomba A, Pellissier L, Randin C, Vicente J, Moreira F, Honrado J, Guisan A (2010) Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143, 2647-2657. |
[33] |
Luo M, Wang H, Lü Z (2017) Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data. Journal of Applied Ecology, 28, 4001-4006. (in Chinese with English abstract)
DOI URL PMID |
[ 罗玫, 王昊, 吕植 (2017) 使用大熊猫数据评估Biomod2和MaxEnt分布预测模型的表现. 应用生态学报, 28, 4001-4006.]
PMID |
|
[34] | Maschinski J, Baggs JE, Quintana-Ascencio PF, Menges ES (2010) Using population viability analysis to predict the effects of climate change on the extinction risk of an endangered limestone endemic shrub, Arizona cliffrose. Conservation Biology, 20, 218-228. |
[35] | McCaffrey DF, Ridgeway G, Morral AR (2004) Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403-425. |
[36] | McCullagh P (1989) Generalized Linear Models. Routledge, New York. |
[37] | Miller JR, Turner MG, Smithwick EA, Dent CL, Stanley EH (2004) Spatial extrapolation: The science of predicting ecological patterns and processes. BioScience, 54, 310-320. |
[38] | Ozinga WA, Schaminée JH, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, Groenendael JMV (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108, 555-561. |
[39] | Parmesan C, Duarte C, Poloczanska E, Richardson AJ, Singer MC (2011) Overstretching attribution. Nature Climate Change, 1, 2-4. |
[40] | Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. |
[41] | Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
[42] | R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing https://www.R-project.org/. (accessed on 2019-05-13) |
[43] | Sheth SN, Angert AL (2014) The evolution of environmental tolerance and range size: A comparison of geographically restricted and widespread Mimulus. Evolution, 68, 2917-2931. |
[44] | Sipes SD, Tepedino VJ (1995) Reproductive biology of the rare orchid, Spiranthes diluvialis: Breeding system, pollination, and implications for conservation. Conservation Biology, 9, 929-938. |
[45] | Suggitt AJ, Wilson RJ, August TA, Beale CM, Bennie JJ, Dordolo A, Fox R, Hopkins JJ, Isaac NJB, Jorieux P (2014) Climate Change Refugia for the Flora and Fauna of England. Natural England Commissioned Reports NECR162, London. |
[46] | Sugiura N (2013) Specialized pollination by carpenter bees in Calanthe striata (Orchidaceae), with a review of carpenter bee pollination in orchids. Botanical Journal of the Linnean Society, 171, 730-743. |
[47] |
Sun M, Gross K, Schiestl FP (2014) Floral adaptation to local pollinator guilds in a terrestrial orchid. Annals of Botany, 113, 289-300.
DOI URL PMID |
[48] | Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2004) Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biological Journal of the Linnean Society, 84, 1-54. |
[49] | van der Cingel N(2001) An Atlas of Orchid Pollination: European Orchids. CRC Press, Rotterdam. |
[50] | van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: An overview. Climatic Change, 109, 5-31. |
[51] | Wilfried T, Damien G, Robin E, Frank B (2019) biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.3-7.1. https://CRAN.R-project.org/package= biomod2/. (accessed on 2019-05-27) |
[52] | Xie D, Zhang C, Zhang MH, Wu MH, Zhang DG (2017) New records of monocotyledon plants in Hubei. Acta Botanica Boreali-Occidentalia Sinica, 37, 815-819. (in Chinese with English abstract) |
[ 谢丹, 张成, 张梦华, 吴名鹤, 张代贵 (2017) 湖北单子叶植物新记录. 西北植物学报, 37, 815-819.] | |
[53] | Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Science, 156, 145-150. |
[54] | Zhang XR, Pu Z, Huang ZH, Zhou X, Xing SH (2017) Habitat characteristics and niche analysis of Calanthe sieboldii Decne. survival community. Plant Science Journal, 35, 799-806. (in Chinese with English abstract) |
[ 张孝然, 蒲真, 黄治昊, 周鑫, 邢韶华 (2017) 大黄花虾脊兰生境特征及生存群落物种生态位分析. 植物科学学报, 35, 799-806.] | |
[55] |
Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
URL PMID |
[1] | 丁翔, 余元钧, 宋希强, 罗毅波. 具有泛化访花者的海芋特化传粉系统[J]. 生物多样性, 2024, 32(6): 24069-. |
[2] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[3] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[4] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[5] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[6] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[7] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[8] | 热依拉穆·麦麦提吐尔逊, 艾沙江·阿不都沙拉木. 石榴花瓣和雄蕊对其传粉过程与繁殖成功的影响[J]. 生物多样性, 2023, 31(7): 22633-. |
[9] | 黄曼娟, 汪雪敏, 苗白鸽, 彭艳琼. 栉颚榕小蜂在雌花期榕果内产卵及主动传粉行为的多样性[J]. 生物多样性, 2023, 31(5): 23060-. |
[10] | 赵秋杰, 郭辉军, 孟广涛, 钟明川, 尹俊, 刘倬橙, 李品荣, 陈力, 陶毅, 秋生, 王红, 赵延会. 放牧对蜜蜂的影响及其生态修复建议[J]. 生物多样性, 2023, 31(5): 23037-. |
[11] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[12] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[13] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[14] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[15] | 罗韶凡, 蒋凯, 黄卫昌. 植物花距表型趋同进化和发育机制多样化的研究进展[J]. 生物多样性, 2023, 31(11): 23249-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn