生物多样性 ›› 2024, Vol. 32 ›› Issue (6): 24069. DOI: 10.17520/biods.2024069
丁翔1(), 余元钧2,3(), 宋希强1,*()(), 罗毅波2,*()()
收稿日期:
2024-02-27
接受日期:
2024-04-03
出版日期:
2024-06-20
发布日期:
2024-04-10
通讯作者:
* E-mail: 基金资助:
Xiang Ding1(), Yuanjun Yu2,3(), Xiqiang Song1,*()(), Yibo Luo2,*()()
Received:
2024-02-27
Accepted:
2024-04-03
Online:
2024-06-20
Published:
2024-04-10
Contact:
* E-mail: 摘要:
特化传粉系统通常被认为是一种高效的植物与传粉者互作的关系, 但即使是高度特化的花朵也经常接受非传粉者的访问。当前的特化传粉系统研究主要关注于植物与特定传粉者的相互作用, 往往忽视了其他访花者的潜在影响。海芋(Alocasia odora)与芋果蝇属(Colocasiomyia)物种是典型的高度特化传粉互惠关系, 但海芋花序仍存在许多其他的访花者类群, 它们对传粉过程的影响尚不清楚。通过访花者筛除实验, 本研究证实了海芋的授粉过程必须有海芋果蝇(C. alocasia)或异海芋果蝇(C. xenalocasiae)的参与。除此以外, 海芋花序上还观察到包括露尾甲科、蜜蜂科、隐翅虫科和跗线螨科等类群的访花者, 共计10种。繁育系统实验表明, 海芋的自交不亲和性是由空间和时间上的雌雄分离造成的。因此, 尽管其他访花者未直接对海芋结实率做出贡献, 但它们对花粉和雄花不育区分泌物报酬的取食行为仍可能整体上减少了有效花粉资源, 并与传粉者竞争报酬资源, 进而间接影响有效传粉者的传粉行为。本研究为特化传粉理论提供了新视角, 未来研究应更全面考虑访花者的整体作用。
丁翔, 余元钧, 宋希强, 罗毅波 (2024) 具有泛化访花者的海芋特化传粉系统. 生物多样性, 32, 24069. DOI: 10.17520/biods.2024069.
Xiang Ding, Yuanjun Yu, Xiqiang Song, Yibo Luo (2024) Specialized pollination system with generalized visitors in Alocasia odora. Biodiversity Science, 32, 24069. DOI: 10.17520/biods.2024069.
图1 海芋花序结构和开花物候。a: 花序结构; b‒e: 花序发育过程(b: 花苞期; c: 雌花期; d: 雄花期; e: 结实期); f: 花序各时期持续天数。
Fig. 1 Inflorescence structure and flowering phenology of Alocasia odora. a, Inflorescence structure. b‒e, Inflorescence development stages (b, Bud stage; c, Female stage; d, Male stage; e, Productive stage). f, Duration of inflorescence in each stage.
授粉方式 Treatments | 处理雌花数量Pistillate flower (n = 25) | 发育雌花数 Developed pistillate flower (n = 25) | 结实率 Fruit set rate (%) (n = 25) |
---|---|---|---|
仅套袋 Bagged only | 105.28 ± 21.02 | 0.24 ± 1.20 | 0.20 ± 1.02c |
去雄套袋 Emasculated and bagging | 84.44 ± 23.86 | 0.00 | 0.00c |
人工自花授粉 Autogamy hand-pollination | 87.40 ± 21.00 | 0.00 | 0.00c |
雌花期异花授粉 Cross-pollination in female stage | 94.32 ± 22.0 | 63.56 ± 36.27 | 66.24 ± 31.39b |
雄花期异花授粉 Cross-pollination in male stage | 86.88 ± 24.98 | 0.24 ± 0.88 | 0.28 ± 0.97c |
自然结实 Open pollination | 114.84 ± 25.33 | 105.40 ± 22.43 | 93.98 ± 6.27a |
表1 海芋不同人工授粉处理结果(平均值 ± 标准差)
Table 1 Result of different hand-pollination treatments of Alocasia odora (mean ± SD)
授粉方式 Treatments | 处理雌花数量Pistillate flower (n = 25) | 发育雌花数 Developed pistillate flower (n = 25) | 结实率 Fruit set rate (%) (n = 25) |
---|---|---|---|
仅套袋 Bagged only | 105.28 ± 21.02 | 0.24 ± 1.20 | 0.20 ± 1.02c |
去雄套袋 Emasculated and bagging | 84.44 ± 23.86 | 0.00 | 0.00c |
人工自花授粉 Autogamy hand-pollination | 87.40 ± 21.00 | 0.00 | 0.00c |
雌花期异花授粉 Cross-pollination in female stage | 94.32 ± 22.0 | 63.56 ± 36.27 | 66.24 ± 31.39b |
雄花期异花授粉 Cross-pollination in male stage | 86.88 ± 24.98 | 0.24 ± 0.88 | 0.28 ± 0.97c |
自然结实 Open pollination | 114.84 ± 25.33 | 105.40 ± 22.43 | 93.98 ± 6.27a |
目 Order | 科 Family | 访花次数No. of visits | 单花序平均访 花个数 Average no. of flowers per inflorescence (n = 40) | 体宽(网目数) Body width (mesh) | 是否移动花粉 Whether to move pollen | 活动花期 Activity stage | 活动位置 Activity site | 活动行为 Activity behavior | ||
---|---|---|---|---|---|---|---|---|---|---|
获取资源 Access to resources | 繁育行为Breeding behavior | 短暂停留 Short stay | ||||||||
鞘翅目Coleoptera | 露尾甲科Nitidulidae | 33 | 8.08 ± 6.29 | < 14 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - |
隐翅虫科 Staphylinidae | 27 | 3.48 ± 3.46 | < 100 | 少量 A little | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - | |
双翅目 Diptera | 果蝇科 Drosophilidae | 40 | 44.75 ± 18.42 | < 20 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | √ |
实蝇科Tephritidae | 1 | 0.03 ± 0.16 | > 14 | - | 雄 Male | 佛焰苞外Outside the spathe | - | - | √ | |
膜翅目Hymenoptera | 蜜蜂科 Apidae | 15 | 0.45 ± 0.64 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ |
隧蜂科 Halictidae | 1 | 0.03 ± 0.16 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ | |
其他 Others | 管蓟马科Phlaeothripidae | 3 | 0.10 ± 0.38 | < 14 | - | 雄 Male | 雄花区 Staminate region | √ | - | - |
跳蛛科Salticidae | 4 | 0.10 ± 0.30 | > 14 | - | 雌 + 雄 Female + Male | 雄花区 Staminate region | √ | - | - | |
跗线螨科Tarsonemidae | 15 | 5.35 ± 8.57 | < 14 | - | 雌 Female | 雌花区 Pistillate region | √ | - | √ |
表2 海芋花序访花者观察(平均值 ± 标准差)
Table 2 Observation of flower visitors of Alocasia odora (mean ± SD)
目 Order | 科 Family | 访花次数No. of visits | 单花序平均访 花个数 Average no. of flowers per inflorescence (n = 40) | 体宽(网目数) Body width (mesh) | 是否移动花粉 Whether to move pollen | 活动花期 Activity stage | 活动位置 Activity site | 活动行为 Activity behavior | ||
---|---|---|---|---|---|---|---|---|---|---|
获取资源 Access to resources | 繁育行为Breeding behavior | 短暂停留 Short stay | ||||||||
鞘翅目Coleoptera | 露尾甲科Nitidulidae | 33 | 8.08 ± 6.29 | < 14 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - |
隐翅虫科 Staphylinidae | 27 | 3.48 ± 3.46 | < 100 | 少量 A little | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | - | |
双翅目 Diptera | 果蝇科 Drosophilidae | 40 | 44.75 ± 18.42 | < 20 | 大量 A lot | 雌 + 雄 Female + Male | 整个花序 Whole inflorescence | √ | √ | √ |
实蝇科Tephritidae | 1 | 0.03 ± 0.16 | > 14 | - | 雄 Male | 佛焰苞外Outside the spathe | - | - | √ | |
膜翅目Hymenoptera | 蜜蜂科 Apidae | 15 | 0.45 ± 0.64 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ |
隧蜂科 Halictidae | 1 | 0.03 ± 0.16 | > 14 | 大量 A lot | 雄 Male | 雄花区 Staminate region | √ | - | √ | |
其他 Others | 管蓟马科Phlaeothripidae | 3 | 0.10 ± 0.38 | < 14 | - | 雄 Male | 雄花区 Staminate region | √ | - | - |
跳蛛科Salticidae | 4 | 0.10 ± 0.30 | > 14 | - | 雌 + 雄 Female + Male | 雄花区 Staminate region | √ | - | - | |
跗线螨科Tarsonemidae | 15 | 5.35 ± 8.57 | < 14 | - | 雌 Female | 雌花区 Pistillate region | √ | - | √ |
图2 海芋常见访花昆虫及后代的活动行为。a‒c: 各时期花序内芋果蝇后代活动; a: 芋果蝇虫卵(雌花期); b: 芋果蝇幼虫(雄花期); c: 芋果蝇虫蛹(结实期); d: 访花者将花粉传递至柱头(雌花期); e: 蜜蜂科访花者收集花粉(雄花期); f: 露尾甲科访花者啃食不育花(雌花期); g: 不育花被啃食的痕迹; h: 孵化的露尾甲科幼虫(雄花不育区)。
Fig. 2 Flower visiting behavior of common visitors and the presence style of offspring in Alocasia odora. a‒c, The different stages of Colocasiomyia offspring. a, Egg of Colocasiomyia (female stage); b, Larva of Colocasiomyia (male stage); c, Pupae of Colocasiomyia (productive stage). d, Pollen transfer by the visitors to the stigma (female stage). e, Apidae visitors collect pollen (male stage). f, Nitidulidae beetles gnaw at sterile flowers (female stage). g, Gnawing trails of sterile flowers. h, Nitidulidae larvae hatched from sterile areas (intermediate sterial region).
处理组 Treatments | 处理雌花数量 Pistillate flower (n = 20) | 发育雌花数 Developed pistillate flower (n = 20) | 结实率 Fruit set rate (%) (n = 20) |
---|---|---|---|
室内组(隔绝所有访花者) Indoor (Isolate all visitors) | 82.05 ± 15.14 | 0.00 | 0.00b |
100目套袋(访花者: 隐翅虫科、管蓟马科、跗线螨科等) 100 mesh bag (visitors: Staphylinidae, Phlaeothripidae, Tarsonemidae, etc) | 101.95 ± 20.74 | 0.30 ± 1.34 | 0.25 ± 1.14b |
20目网袋(新增访花者: 果蝇科等) 20 mesh cage (new visitors: Drosophilidae, etc) | 89.05 ± 21.27 | 70.95 ± 30.50 | 76.26 ± 22.94a |
16目网袋(新增访花者: 中小体型露尾甲科) 16 mesh cage (new visitor: Small and medium size of Nitidulidae) | 88.75 ± 25.32 | 65.50 ± 31.11 | 70.24 ± 23.05a |
14目网袋(新增访花者: 大体型露尾甲科) 14 mesh cage (new visitor: Large size of Nitidulidae) | 120.90 ± 35.77 | 95.95 ± 44.12 | 77.35 ± 22.63a |
自然结实(新增访花者: 蜜蜂科和跳蛛科等) Control group (new visitors: Apidae, Salticidae, etc) | 100.70 ± 34.52 | 86.25 ± 36.88 | 83.35 ± 14.87a |
表3 不同访花者传粉效果(平均值 ± 标准差)
Table 3 Pollination effects of different visitors (mean ± SD)
处理组 Treatments | 处理雌花数量 Pistillate flower (n = 20) | 发育雌花数 Developed pistillate flower (n = 20) | 结实率 Fruit set rate (%) (n = 20) |
---|---|---|---|
室内组(隔绝所有访花者) Indoor (Isolate all visitors) | 82.05 ± 15.14 | 0.00 | 0.00b |
100目套袋(访花者: 隐翅虫科、管蓟马科、跗线螨科等) 100 mesh bag (visitors: Staphylinidae, Phlaeothripidae, Tarsonemidae, etc) | 101.95 ± 20.74 | 0.30 ± 1.34 | 0.25 ± 1.14b |
20目网袋(新增访花者: 果蝇科等) 20 mesh cage (new visitors: Drosophilidae, etc) | 89.05 ± 21.27 | 70.95 ± 30.50 | 76.26 ± 22.94a |
16目网袋(新增访花者: 中小体型露尾甲科) 16 mesh cage (new visitor: Small and medium size of Nitidulidae) | 88.75 ± 25.32 | 65.50 ± 31.11 | 70.24 ± 23.05a |
14目网袋(新增访花者: 大体型露尾甲科) 14 mesh cage (new visitor: Large size of Nitidulidae) | 120.90 ± 35.77 | 95.95 ± 44.12 | 77.35 ± 22.63a |
自然结实(新增访花者: 蜜蜂科和跳蛛科等) Control group (new visitors: Apidae, Salticidae, etc) | 100.70 ± 34.52 | 86.25 ± 36.88 | 83.35 ± 14.87a |
[1] | Althoff DM, Segraves KA (2022) Evolution of antagonistic and mutualistic traits in the yucca-yucca moth obligate pollination mutualism. Journal of Evolutionary Biology, 35, 100-108. |
[2] |
Barrett SCH (2002) Sexual interference of the floral kind. Heredity, 88, 154-159.
PMID |
[3] | Bian FH, Luo Y, Li LX, Pang YJ, Peng YQ (2021) Inflorescence development, thermogenesis and flower-visiting insect activity in Alocasia odora. Flora, 279, 151818. |
[4] |
Chen Y, Li HQ, Liu M, Chen XY (2010) Species-specificity and coevolution of figs and their pollinating wasps. Biodiversity Science, 18, 1-10. (in Chinese with English abstract)
DOI |
[陈艳, 李宏庆, 刘敏, 陈小勇 (2010) 榕-传粉榕小蜂间的专一性与协同进化. 生物多样性, 18, 1-10.]
DOI |
|
[5] |
Compton SG, Hawkins BA (1992) Determinants of species richness in southern African fig wasp assemblages. Oecologia, 91, 68-74.
DOI PMID |
[6] | Eisikowitch D, Ghara M (2017) An overview on Ficus pollination. Acta Horticulturae, 1173, 143-148. |
[7] | Espíndola A, Pliscoff P (2019) The relationship between pollinator visits and climatic suitabilities in specialized pollination interactions. Annals of the Entomological Society of America, 112, 150-157. |
[8] | Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35, 375-403. |
[9] | Hiscock SJ, Kües U (1999) Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. International Review of Cytology, 193, 165-295. |
[10] |
Hoe YC, Gibernau M, Wong SY (2018) Diversity of pollination ecology in the Schismatoglottis calyptrata complex clade (Araceae). Plant Biology, 20, 563-578.
DOI PMID |
[11] | Holsinger KE, Feldman MW, Christiansen FB (1984) The evolution of self-fertilization in plants: A population genetic model. The American Naturalist, 124, 446-453. |
[12] | Janovský Z, Štenc J (2023) Pollinator community and generalisation of pollinator spectra changes with plant niche width and local dominance. Functional Ecology, 37, 2967-2976. |
[13] |
Jiménez PD, Hentrich H, Aguilar-Rodríguez PA, Krömer T, Chartier M, MacSwiney GMC, Gibernau M (2019) A review on the pollination of aroids with bisexual flowers. Annals of the Missouri Botanical Garden, 104, 83-104.
DOI |
[14] | Johnson SD, Neal PR, Harder LD (2005) Pollen fates and the limits on male reproductive success in an orchid population. Biological Journal of the Linnean Society, 86, 175-190. |
[15] | Kishore K, Shukla AK, Babu N, Sarangi DN, Patanayak S (2012) Pollination biology of Annona squamosa L. (Annonaceae): Evidence for pollination syndrome. Scientia Horticulturae, 144, 212-217. |
[16] |
Klomberg Y, Tropek R, Mertens JE, Kobe IN, Hodeček J, Raška J, Fominka NT, Souto-Vilarós D, Janečková P, Janěcek Š (2022) Spatiotemporal variation in the role of floral traits in shaping tropical plant-pollinator interactions. Ecology letters, 25, 839-850.
DOI PMID |
[17] |
Liu DX, Wang QF, Yang CF (2022) Flower diversity and pollination strategy in Araceae. Biodiversity Science, 30, 21426. (in Chinese with English abstract)
DOI |
[刘德鑫, 王青锋, 杨春锋 (2022) 天南星科植物的花多样性与传粉策略. 生物多样性, 30, 21426.]
DOI |
|
[18] | Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. International Journal of Plant Sciences, 153, 370-380. |
[19] | Maekawa H, Otsubo M, Sato MP, Takahashi T, Mizoguchi K, Koyamatsu D, Inaba T, Ito-Inaba Y (2022) Establishing an efficient protoplast transient expression system for investigation of floral thermogenesis in aroids. Plant Cell Reports, 41, 263-275. |
[20] | Miyake T, Yafuso M (2003) Floral scents affect reproductive success in fly-pollinated Alocasia odora (Araceae). American Journal of Botany, 90, 370-376. |
[21] | Miyake T, Yafuso M (2005) Pollination of Alocasia cucullata (Araceae) by two Colocasiomyia flies known to be specific pollinators for Alocasia odora. Plant Species Biology, 20, 201-208. |
[22] | Okada T (1975) The oriental drosophilids breeding in flowers. Kontyu, 43, 356-360. |
[23] | Suetsugu K (2022) Arisaema: Pollination by lethal attraction. Plants, People, Planet, 4, 196-200. |
[24] | Suetsugu K, Nishigaki H, Fukushima S, Ishitani E, Kakishima S, Sueyoshi M (2022) Thread-like appendix on Arisaema urashima (Araceae) attracts fungus gnat pollinators. Ecology, 103, e3782. |
[25] | Suetsugu K, Sato R, Kakishima S, Okuyama Y, Sueyoshi M (2021) The sterile appendix of two sympatric Arisaema species lures each specific pollinator into deadly trap flowers. Ecology, 102, e03242. |
[26] | Sun SG, Huang ZH, Chen ZB, Huang SQ (2017) Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). American Journal of Botany, 104, 468-476. |
[27] | Takano KT, Gao J, Hu Y, Li N, Yafuso M, Suwito A, Repin R, Pungga RA, Meleng PA, Kaliang CH, Chong L, Toda MJ (2021) Phylogeny, taxonomy and flower-breeding ecology of the Colocasiomyia cristata species group (Diptera: Drosophilidae), with descriptions of ten new species. Zootaxa, 5079, 170. |
[28] | Tang R, Huang BG, Sun WB, Chen G (2020) Pollination biology of Amorphophallus albus (Araceae), an endemic plant in the dry-hot valley of Jinsha River. Plant Science Journal, 38, 458-466. (in Chinese with English abstract) |
[唐荣, 黄保国, 孙卫邦, 陈高 (2020) 金沙江干热河谷特有植物白魔芋的传粉生物学研究. 植物科学学报, 38, 458-466.] | |
[29] | Toda MJ, Takano KT, Katoh T, Xiao L, Gao JJ, Yafuso M (2022) Coexistence mechanisms of Colocasiomyia species (Diptera: Drosophilidae) sharing inflorescences of Alocasia odora (Araceae) as a host plant: Comparison between two- and three-species systems. Entomological Science, 25, e12506. |
[30] |
Tong ZY, Xu HL, Huang SQ (2018) Examining methodologies of pollinator detection in the field. Biodiversity Science, 26, 433-444. (in Chinese with English abstract)
DOI |
[童泽宇, 徐环李, 黄双全 (2018) 探讨监测传粉者的方法. 生物多样性, 26, 433-444.]
DOI |
|
[31] | Van Goor J, Kanzaki N, Woodruff G (2023) How to be a fig nematode. Acta Oecologica, 119, 103916. |
[32] | Wang LF, Zhang TT, Xiang WQ, Liang HT, Tan K, Shen YC (2024) Pollination biology of the rare and endangered submerged plant, Ottelia cordata. Guihaia, 44, 157-166. (in Chinese with English abstract) |
[王銮凤, 张同同, 向文倩, 梁惠婷, 谭珂, 申益春 (2024) 珍稀濒危沉水植物水菜花传粉生物学研究. 广西植物, 44, 157-166.] | |
[33] | Wang XY, Yao RX, Lv XQ, Yi Y, Tang XX (2023) Nectar robbing by bees affects the reproductive fitness of the distylous plant Tirpitzia sinensis (Linaceae). Ecology and Evolution, 13, e10714. |
[34] | Wu SB, Liu Q, Yang P, Yang DR, Peng YQ, Song J (2019) Karyotype analysis of a pollinator, and a non-pollinator, of Ficus auriculata Loureiro. Chinese Journal of Applied Entomology, 56, 819-825. (in Chinese with English abstract) |
[武士波, 柳青, 杨培, 杨大荣, 彭艳琼, 宋娟 (2019) 木瓜榕传粉榕小蜂与一种非传粉榕小蜂核型比较分析. 应用昆虫学报, 56, 819-825.] | |
[35] | Yafuso M (1993) Thermogenesis of Alocasia odora (Araceae) and the role of Colocasiomyia flies (Diptera: Drosophilidae) as cross-pollinators. Environmental Entomology, 22, 601-606. |
[36] | Yafuso M (1994) Life history traits related to resource partitioning between synhospitalic species of Colocasiomyia (Diptera, Drosophilidae) breeding in inflorescences of Alocasia odora (Araceae). Ecological Entomology, 19, 65-73. |
[37] | Zhang DY (2004) Plant Life-history Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese) |
[张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.] | |
[38] | Zhang T, Jandér KC, Huang J, Wang B, Zhao J, Miao B, Peng Y, Herre EA (2021) The evolution of parasitism from mutualism in wasps pollinating the fig, Ficus microcarpa, in Yunnan Province, China. Proceedings of the National Academy of Sciences, USA, 118, e2021148118. |
[39] | Zych M, Junker RR, Nepi M, Stpiczyńska M, Stolarska B, Roguz K (2019) Spatiotemporal variation in the pollination systems of a supergeneralist plant: Is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators? Annals of Botany, 123, 415-428. |
[1] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[2] | 刘德鑫, 王青锋, 杨春锋. 天南星科植物的花多样性与传粉策略[J]. 生物多样性, 2022, 30(3): 21426-. |
[3] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[4] | 贾翔宇, 白彬, 张洁清, 黄艺. IPBES评估报告对全球生物多样性保护的影响——以美国传粉者保护政策为例[J]. 生物多样性, 2018, 26(5): 527-534. |
[5] | 黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5): 486-497. |
[6] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[7] | 孙士国, 卢斌, 卢新民, 黄双全. 入侵植物的繁殖策略以及对本土植物繁殖的影响[J]. 生物多样性, 2018, 26(5): 457-467. |
[8] | 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5): 433-444. |
[9] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[10] | 黄至欢, 陆奇丰, 陈颖卓. 地锦苗在石灰岩土壤和红壤生境中的繁殖成功的比较[J]. 生物多样性, 2017, 25(9): 972-980. |
[11] | 田瑜, 兰存子, 徐靖, 李秀山, 李俊生. IPBES框架下的全球传粉评估及我国对策[J]. 生物多样性, 2016, 24(9): 1084-1090. |
[12] | 钱贞娜, 任明迅. “金虎尾路线”植物的花进化与传粉转变[J]. 生物多样性, 2016, 24(1): 95-101. |
[13] | 李海东, 任宗昕, 吴之坤, 许琨, 王红. 二型花柱植物海仙花报春花部性状随地理梯度的变异[J]. 生物多样性, 2015, 23(6): 747-758. |
[14] | 杜家潇, 孟璐, 孙海芹, 包颖. 盗蜜对角蒿传粉者行为和生殖成功的影响[J]. 生物多样性, 2015, 23(5): 658-664. |
[15] | 戴漂漂, 张旭珠, 刘云慧. 传粉动物多样性的保护与农业景观传粉服务的提升[J]. 生物多样性, 2015, 23(3): 408-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn