生物多样性 ›› 2019, Vol. 27 ›› Issue (4): 419-432. DOI: 10.17520/biods.2018316
马燕婕1,何浩鹏1,沈文静2,刘标2,*(),薛堃1,2,*(
)
收稿日期:
2018-11-23
接受日期:
2019-02-28
出版日期:
2019-04-20
发布日期:
2019-06-05
通讯作者:
刘标,薛堃
基金资助:
Ma Yanjie1,He Haopeng1,Shen Wenjing2,Liu Biao2,*(),Xue Kun1,2,*(
)
Received:
2018-11-23
Accepted:
2019-02-28
Online:
2019-04-20
Published:
2019-06-05
Contact:
Liu Biao,Xue Kun
摘要:
通过对转基因耐除草剂(EPSPS)抗虫(Cry1Ab)玉米转化体‘DBN9936’、受体玉米‘DBN318’、常规玉米‘先玉335’和喷施除草剂的转化体‘DBN9936’玉米田中节肢动物种类及数量的调查, 评价转基因玉米对田间节肢动物群落多样性的影响。2015年和2017年我们采用直接观察法、陷阱调查法和剖秆法对田间节肢动物进行调查, 采用聚类分析、物种累积曲线等方法对数据进行分析, 并比较了4个处理玉米田节肢动物群落的Margalef丰富度指数、Shannon-Wiener多样性指数、Simpson多样性指数、Pielou均匀度指数、优势集中性指数和群落相似性指数的差异及其随时间变化的规律。调查期间共记录节肢动物20目80科; 转化体玉米‘DBN9936’ (2015: 10.3 ± 2.6头, 2017: 3.3 ± 1.7头)和喷施除草剂的转化体玉米‘DBN9936’ (2015: 6.0 ± 1.5头, 2017: 17.0 ± 0.6头)上鳞翅目昆虫的数量明显低于受体‘DBN318’ (2015: 20.0 ± 3.2头, 2017: 24.0 ± 6.0头)和‘先玉335’ (2015: 21.0 ± 8.9头, 2017: 26.7 ± 2.0头); 物种累积曲线呈典型的抛物线, 各类玉米田间总体物种丰富度差异较小; 玉米生育期节肢动物调查结果累计数量的功能团组成及其丰富度、多样性、均匀度、优势集中性间均无明显的差异, 各类指数随时间变化的动态趋于一致, 群落间相似性程度较高。转基因玉米‘DBN9936’对鳞翅目害虫有明显的抗性, 对非靶标节肢动物无显著的影响, 对田间节肢动物的群落多样性、均匀度、丰富度、优势集中性等没有明显的影响。
马燕婕,何浩鹏,沈文静,刘标,薛堃 (2019) 转基因玉米对田间节肢动物群落多样性的影响. 生物多样性, 27, 419-432. DOI: 10.17520/biods.2018316.
Ma Yanjie,He Haopeng,Shen Wenjing,Liu Biao,Xue Kun (2019) Effects of transgenic maize on arthropod diversity. Biodiversity Science, 27, 419-432. DOI: 10.17520/biods.2018316.
功能群 Functional groups | 主要类群 Major groups | ‘DBN9936’ | ‘DBN318’ | ‘先玉335’ Xianyu 335 | ‘DBN9936’喷除草剂 DBN9936 + herbicide | P |
---|---|---|---|---|---|---|
2015 | ||||||
主要害虫 Main pest | 鳞翅目 Lepidopteron | 10.3 ± 2.6a | 20.0 ± 3.2a | 21.0 ± 8.9a | 6.0 ± 1.5a | 0.166 |
长角?科 Entomobryidae | 112.3 ± 25.5a | 105.7 ± 9.9a | 128.3 ± 11.3a | 113.7 ± 8.1a | 0.765 | |
蚜科 Aphididae | 834.0 ± 206.6a | 763.3 ± 118.3a | 515.7 ± 62.1a | 590.0 ± 84.3a | 0.341 | |
叶甲科 Chrysomelidae | 1,194.0 ± 94.4b | 1,308.7 ± 32.9b | 1,009.7 ± 56.4a | 1,217.3 ± 42.9b | 0.047 | |
总和 Total | 2,212.3 ± 266.9a | 2,258.0 ± 154.5a | 1,736.0 ± 37.8a | 1,985.7 ± 109.9a | 0.176 | |
捕食性天敌 Predatory natural enemy | 蜘蛛目 Araneida | 43.7 ± 4.6a | 52.3 ± 2.2a | 59.3 ± 3.8a | 54.3 ± 7.7a | 0.246 |
瓢虫科 Coccinellidae | 113.7 ± 6.1a | 106.3 ± 11.2a | 104.3 ± 7.9a | 120.0 ± 15.1a | 0.720 | |
草蛉科 Chrysopidae | 36.3 ± 6.2a | 32.3 ± 2.8a | 25.3 ± 4.1a | 25.3 ± 4.1a | 0.288 | |
步甲科 Carabidae | 12.7 ± 2.9a | 15.0 ± 3.2a | 20.7 ± 9.9a | 20.0 ± 6.5a | 0.808 | |
总和 Total | 214.7 ± 8.6a | 213.3 ± 10.3a | 219.7 ± 3.8a | 231.0 ± 5.5a | 0.386 | |
寄生性天敌 Parasitic natural enemy | 总和 Total | 8.7 ± 3.3a | 6.7 ± 1.9a | 5.7 ± 0.9a | 7.7 ± 0.9a | 0.742 |
中性节肢动物 Neutral arthropod | 总和 Total | 206.7 ± 31.5a | 177.7 ± 9.0a | 152.0 ± 28.6a | 147.0 ± 20.4a | 0.339 |
2017 | ||||||
主要害虫 Main pest | 鳞翅目 Lepidopteron | 3.3 ± 1.7a | 24.0 ± 6.0b | 26.7 ± 2.0b | 17.0 ± 0.6a | 0.005 |
蚜科 Aphididae | 5,357.0 ± 148.5a | 5,408.3 ± 324.9a | 5,444.0 ± 607.7a | 4,751.7 ± 171.3a | 0.520 | |
叶甲科 Chrysomelidae | 42.3 ± 3.8a | 51.0 ± 4.6a | 40.0 ± 3.5a | 46.7 ± 1.5a | 0.213 | |
长角?科 Entomobryidae | 86.3 ± 9.8a | 95.0 ± 12.5a | 93.4 ± 6.6a | 97.0 ± 10.0a | 0.882 | |
总和 Total | 5,880.7 ± 133.5a | 5,974.7 ± 334.9a | 6,011.7 ± 592.7a | 5,321.7 ± 185.8a | 0.526 | |
捕食性天敌 Predatory natural enemy | 蜘蛛目 Araneida | 87.0 ± 8.5a | 97.7 ± 12.1a | 88.0 ± 3.5a | 86.3 ± 5.2a | 0.732 |
瓢虫科 Coccinellidae | 235.7 ± 8.7a | 211.3 ± 34.0a | 221.3 ± 21.9a | 250.7 ± 10.4a | 0.607 | |
草蛉科 Chrysopidae | 51.0 ± 6.5a | 41.0 ± 7.0a | 39.0 ± 3.5a | 54.0 ± 6.7a | 0.295 | |
步甲科 Carabidae | 36.7 ± 4.5a | 49.7 ± 7.5a | 39.0 ± 5.6a | 45.7 ± 7.1a | 0.481 | |
小花蝽 Orius sauteri | 57.3 ± 2.3b | 36.7 ± 4.3a | 39.7 ± 0.9a | 39.7 ± 6.8a | 0.029 | |
总和 Total | 510.7 ± 22.0a | 481.3 ± 15.2a | 476.7 ± 23.7a | 522.0 ± 11.8a | 0.298 | |
寄生性天敌 Parasitic natural enemy | 总和 Total | 7.3 ± 1.8a | 9.0 ± 3.8a | 8.0 ± 0.6a | 7.0 ± 2.0a | 0.933 |
中性节肢动物 Neutral arthropod | 总和 Total | 166.7 ± 22.0a | 181.0 ± 8.6a | 150.7 ± 5.5a | 153.3 ± 25.2a | 0.613 |
表1 2015年和2017年4个玉米处理上节肢动物各功能群中主要类群的累积数量(头/50株)
Table 1 The cumulative number of main arthropods in the functional groups of four maize treatments in 2015 and 2017 (number of arthropods every 50 plants)
功能群 Functional groups | 主要类群 Major groups | ‘DBN9936’ | ‘DBN318’ | ‘先玉335’ Xianyu 335 | ‘DBN9936’喷除草剂 DBN9936 + herbicide | P |
---|---|---|---|---|---|---|
2015 | ||||||
主要害虫 Main pest | 鳞翅目 Lepidopteron | 10.3 ± 2.6a | 20.0 ± 3.2a | 21.0 ± 8.9a | 6.0 ± 1.5a | 0.166 |
长角?科 Entomobryidae | 112.3 ± 25.5a | 105.7 ± 9.9a | 128.3 ± 11.3a | 113.7 ± 8.1a | 0.765 | |
蚜科 Aphididae | 834.0 ± 206.6a | 763.3 ± 118.3a | 515.7 ± 62.1a | 590.0 ± 84.3a | 0.341 | |
叶甲科 Chrysomelidae | 1,194.0 ± 94.4b | 1,308.7 ± 32.9b | 1,009.7 ± 56.4a | 1,217.3 ± 42.9b | 0.047 | |
总和 Total | 2,212.3 ± 266.9a | 2,258.0 ± 154.5a | 1,736.0 ± 37.8a | 1,985.7 ± 109.9a | 0.176 | |
捕食性天敌 Predatory natural enemy | 蜘蛛目 Araneida | 43.7 ± 4.6a | 52.3 ± 2.2a | 59.3 ± 3.8a | 54.3 ± 7.7a | 0.246 |
瓢虫科 Coccinellidae | 113.7 ± 6.1a | 106.3 ± 11.2a | 104.3 ± 7.9a | 120.0 ± 15.1a | 0.720 | |
草蛉科 Chrysopidae | 36.3 ± 6.2a | 32.3 ± 2.8a | 25.3 ± 4.1a | 25.3 ± 4.1a | 0.288 | |
步甲科 Carabidae | 12.7 ± 2.9a | 15.0 ± 3.2a | 20.7 ± 9.9a | 20.0 ± 6.5a | 0.808 | |
总和 Total | 214.7 ± 8.6a | 213.3 ± 10.3a | 219.7 ± 3.8a | 231.0 ± 5.5a | 0.386 | |
寄生性天敌 Parasitic natural enemy | 总和 Total | 8.7 ± 3.3a | 6.7 ± 1.9a | 5.7 ± 0.9a | 7.7 ± 0.9a | 0.742 |
中性节肢动物 Neutral arthropod | 总和 Total | 206.7 ± 31.5a | 177.7 ± 9.0a | 152.0 ± 28.6a | 147.0 ± 20.4a | 0.339 |
2017 | ||||||
主要害虫 Main pest | 鳞翅目 Lepidopteron | 3.3 ± 1.7a | 24.0 ± 6.0b | 26.7 ± 2.0b | 17.0 ± 0.6a | 0.005 |
蚜科 Aphididae | 5,357.0 ± 148.5a | 5,408.3 ± 324.9a | 5,444.0 ± 607.7a | 4,751.7 ± 171.3a | 0.520 | |
叶甲科 Chrysomelidae | 42.3 ± 3.8a | 51.0 ± 4.6a | 40.0 ± 3.5a | 46.7 ± 1.5a | 0.213 | |
长角?科 Entomobryidae | 86.3 ± 9.8a | 95.0 ± 12.5a | 93.4 ± 6.6a | 97.0 ± 10.0a | 0.882 | |
总和 Total | 5,880.7 ± 133.5a | 5,974.7 ± 334.9a | 6,011.7 ± 592.7a | 5,321.7 ± 185.8a | 0.526 | |
捕食性天敌 Predatory natural enemy | 蜘蛛目 Araneida | 87.0 ± 8.5a | 97.7 ± 12.1a | 88.0 ± 3.5a | 86.3 ± 5.2a | 0.732 |
瓢虫科 Coccinellidae | 235.7 ± 8.7a | 211.3 ± 34.0a | 221.3 ± 21.9a | 250.7 ± 10.4a | 0.607 | |
草蛉科 Chrysopidae | 51.0 ± 6.5a | 41.0 ± 7.0a | 39.0 ± 3.5a | 54.0 ± 6.7a | 0.295 | |
步甲科 Carabidae | 36.7 ± 4.5a | 49.7 ± 7.5a | 39.0 ± 5.6a | 45.7 ± 7.1a | 0.481 | |
小花蝽 Orius sauteri | 57.3 ± 2.3b | 36.7 ± 4.3a | 39.7 ± 0.9a | 39.7 ± 6.8a | 0.029 | |
总和 Total | 510.7 ± 22.0a | 481.3 ± 15.2a | 476.7 ± 23.7a | 522.0 ± 11.8a | 0.298 | |
寄生性天敌 Parasitic natural enemy | 总和 Total | 7.3 ± 1.8a | 9.0 ± 3.8a | 8.0 ± 0.6a | 7.0 ± 2.0a | 0.933 |
中性节肢动物 Neutral arthropod | 总和 Total | 166.7 ± 22.0a | 181.0 ± 8.6a | 150.7 ± 5.5a | 153.3 ± 25.2a | 0.613 |
ACE 指数 ACE Index | Bootstrap 指数 Bootstrap Index | Jackknife 1 指数 Jackknife 1 Index | 实际物 种数 Number of species | 比例 Ratio (%) | |
---|---|---|---|---|---|
2015 | |||||
植株 Maize plant | 51.49 | 54.25 | 58.88 | 48 | 88.87 |
地表 Land surface | 58.26 | 51.41 | 54.96 | 49 | 88.25 |
总体 Total | 66.61 | 65.33 | 70.96 | 61 | 90.56 |
2017 | |||||
植株 Maize plant | 71.07 | 71.32 | 72.97 | 68 | 95.11 |
地表 Land surface | 78.65 | 64.66 | 72.81 | 59 | 80.98 |
总体 Total | 93.36 | 88.45 | 93.95 | 83 | 89.92 |
表2 2015年和2017年不同玉米处理上节肢动物物种丰富度
Table 2 Species richness index of arthropods of different maize treatments in 2015 and 2017
ACE 指数 ACE Index | Bootstrap 指数 Bootstrap Index | Jackknife 1 指数 Jackknife 1 Index | 实际物 种数 Number of species | 比例 Ratio (%) | |
---|---|---|---|---|---|
2015 | |||||
植株 Maize plant | 51.49 | 54.25 | 58.88 | 48 | 88.87 |
地表 Land surface | 58.26 | 51.41 | 54.96 | 49 | 88.25 |
总体 Total | 66.61 | 65.33 | 70.96 | 61 | 90.56 |
2017 | |||||
植株 Maize plant | 71.07 | 71.32 | 72.97 | 68 | 95.11 |
地表 Land surface | 78.65 | 64.66 | 72.81 | 59 | 80.98 |
总体 Total | 93.36 | 88.45 | 93.95 | 83 | 89.92 |
图4 2015年和2017年4个玉米处理上节肢动物群落聚类结果。每个玉米处理具有3个重复试验, 节肢动物种类和数量的相似度越高的样地, 其聚类支靠的越近。
Fig. 4 The clustering results of the arthropod communities of four maize treatments in 2015 and 2017. Each maize treatment has 3 replicates. The higher the similarity of arthropod species and quantity is, the closer the clustering branches is.
图7 2015年和2017年4个玉米处理上田间节肢动物群落优势集中性指数动态
Fig. 7 The dominant concentration index dynamics of arthropod community of four maize treatments in 2015 and 2017
为害指标 Damage parameter and degree | ‘DBN9936’ | ‘DBN318’ | ‘先玉335’ Xianyu 335 | ‘DBN9936’喷除草剂 DBN9936 + herbicide |
---|---|---|---|---|
2015 | ||||
蛀孔数(个/50株) Number of apertures every 50 plants | 0.0 ± 0.0b | 14.3 ± 1.2a | 22.0 ± 4.0a | 0.0 ± 0.0b |
活虫数(头/50株) Number of alive borers every 50 plants | 0.3 ± 0.3b | 10.3 ± 1.0a | 12.5 ± 1.9a | 0.3 ± 0.3b |
最长隧道长度 Maximum tunnel length (cm) | 0.0 | 16.5 | 13.0 | 0.0 |
平均隧道长度 Average tunnel length (cm) | - | 6.50 ± 0.56b | 4.97 ± 0.40a | - |
最长穗尖被害长度 Maximum damage length of spike tip (cm) | 5.5 | 7.0 | 8.0 | 4.0 |
平均穗尖被害长度 Average damage length of spike tip (cm) | 2.33 ± 1.59a | 3.01 ± 0.21a | 2.98 ± 0.20a | 1.94 ± 0.39a |
2017 | ||||
蛀孔数(个/50株) Number of apertures every 50 plants | 8.0 ± 7.9a | 16.0 ± 8.1a | 8.7 ± 2.4a | 5.3 ± 1.8a |
活虫数(头/50株) Number of alive borers every 50 plants | 3.3 ± 0.3a | 10.7 ± 0.5a | 6.0 ± 0.1a | 2.7 ± 0.2a |
最长隧道长度 Maximum tunnel length (cm) | 13.5 | 20.0 | 20.8 | 7.0 |
平均隧道长度 Average tunnel length (cm) | 2.97 ± 2.97a | 5.92 ± 2.87a | 3.68 ± 4.06a | 0.87 ± 0.49a |
最长穗尖被害长度 Maximum damage length of spike tip (cm) | 9.0 | 27.4 | 22.8 | 16.8 |
平均穗尖被害长度 Average damage length of spike tip (cm) | 2.39 ± 1.74a | 6.24 ± 1.23a | 8.18 ± 2.36a | 3.76 ± 3.42a |
表3 2015年和2017年4个处理玉米的亚洲玉米螟和棉铃虫为害情况
Table 3 Damage degree of four maize treatment by Ostrinia furnacalis and Helicoverpa armigera in 2015 and 2017
为害指标 Damage parameter and degree | ‘DBN9936’ | ‘DBN318’ | ‘先玉335’ Xianyu 335 | ‘DBN9936’喷除草剂 DBN9936 + herbicide |
---|---|---|---|---|
2015 | ||||
蛀孔数(个/50株) Number of apertures every 50 plants | 0.0 ± 0.0b | 14.3 ± 1.2a | 22.0 ± 4.0a | 0.0 ± 0.0b |
活虫数(头/50株) Number of alive borers every 50 plants | 0.3 ± 0.3b | 10.3 ± 1.0a | 12.5 ± 1.9a | 0.3 ± 0.3b |
最长隧道长度 Maximum tunnel length (cm) | 0.0 | 16.5 | 13.0 | 0.0 |
平均隧道长度 Average tunnel length (cm) | - | 6.50 ± 0.56b | 4.97 ± 0.40a | - |
最长穗尖被害长度 Maximum damage length of spike tip (cm) | 5.5 | 7.0 | 8.0 | 4.0 |
平均穗尖被害长度 Average damage length of spike tip (cm) | 2.33 ± 1.59a | 3.01 ± 0.21a | 2.98 ± 0.20a | 1.94 ± 0.39a |
2017 | ||||
蛀孔数(个/50株) Number of apertures every 50 plants | 8.0 ± 7.9a | 16.0 ± 8.1a | 8.7 ± 2.4a | 5.3 ± 1.8a |
活虫数(头/50株) Number of alive borers every 50 plants | 3.3 ± 0.3a | 10.7 ± 0.5a | 6.0 ± 0.1a | 2.7 ± 0.2a |
最长隧道长度 Maximum tunnel length (cm) | 13.5 | 20.0 | 20.8 | 7.0 |
平均隧道长度 Average tunnel length (cm) | 2.97 ± 2.97a | 5.92 ± 2.87a | 3.68 ± 4.06a | 0.87 ± 0.49a |
最长穗尖被害长度 Maximum damage length of spike tip (cm) | 9.0 | 27.4 | 22.8 | 16.8 |
平均穗尖被害长度 Average damage length of spike tip (cm) | 2.39 ± 1.74a | 6.24 ± 1.23a | 8.18 ± 2.36a | 3.76 ± 3.42a |
[1] | Arias-Martín M, García M, Castañera P, Ortego F, Farinós GP ( 2016) Farm-scale evaluation of the impact of Cry1Ab Bt maize on canopy nontarget arthropods: A 3-year study. Insect Science, 25, 87-98. |
[2] |
Bhatti MA, Duan J, Head GP, Jiang CJ, Mckee MJ, Nickson TE, Pilcher CL, Pilcher CD ( 2005) Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods. Environmental Entomology, 34, 1336-1345.
DOI URL |
[3] |
Bitzer RJ, Rice ME, Pilcher CD, Pilcher CL, Lam WF ( 2005) Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt corn. Environmental Entomology, 34, 1346-1376.
DOI URL |
[4] | Cai BH ( 2015) Insect Taxonomy. Chemical Industry Press, Beijing. (in Chinese) |
[ 蔡邦华 ( 2015) 昆虫分类学. 化学工业出版社, 北京.] | |
[5] |
Carrière Y, Williams JL, Crowder DW, Tabashnik BE ( 2018) Genotype-specific fitness cost of resistance to Bt toxin Cry1Ac in pink bollworm. Pest Management Science, 74, 2496-2503.
DOI URL |
[6] |
Farinos GP, Mdela P, Hernándezcrespo P, Ortego F, Castanera P ( 2008) Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in central Spain. Biological Control, 44, 362-371.
DOI URL |
[7] |
Guo JF, He KL, Hellmich RL, Bai SX, Zhang TT, Liu YJ, Ahmed T, Wang ZY ( 2016) Field trials to evaluate the effects of transgenic Cry1Ie maize on the community characteristics of arthropod natural enemies. Scientific Reports, 6, 22102.
DOI |
[8] | Guo JH, Ji GZ, Li G, Zhao JN, Yang DL, Zhang GL, Yan FM, Xiu WM ( 2016) The impact of non-Bt genetically modified cotton on the community diversity and food-web structure of arthropods. Cotton Science, 28, 81-86. (in Chinese with English abstract) |
[ 郭佳惠, 冀国桢, 李刚, 赵建宁, 杨殿林, 张贵龙, 闫凤鸣, 修伟明 ( 2016) 3种转非抗虫基因棉花田间节肢动物群落的多样性和食物网结构. 棉花学报, 28, 81-86.] | |
[9] |
Guo JY, Zhou HX, Wan FH, Han ZJ ( 2007) Structure and seasonal dynamics of arthropods in transgenic cotton fields. Acta Agriculturae Boreali-Sinica, 22(6), 183-189. (in Chinese with English abstract)
DOI |
[ 郭建英, 周洪旭, 万方浩, 韩召军 ( 2007) 转基因棉田节肢动物群落结构与动态. 华北农学报, 22(6), 183-189.]
DOI |
|
[10] | He HP, Ren ZT, Shen WJ, Liu B, Xue K ( 2018) Effects of transgenic herbicide-tolerate maize on biodiversity of arthropod communities in the fields. Journal of Ecology and Rural Environment, 34, 333-341. (in Chinese with English abstract) |
[ 何浩鹏, 任振涛, 沈文静, 刘标, 薛堃 ( 2018) 耐除草剂转基因玉米对田间节肢动物群落多样性的影响. 生态与农村环境学报, 34, 333-341.] | |
[11] |
Hilbeck A, Baumgartner M, Fried PM, Bigler F ( 1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 480-487.
DOI URL |
[12] | International Service for the Acquisition of Agri-biotech Applications ( ISAAA) ( 2017) Global biotechnology / GM crop commercial development trend in 2016. China Biotechnology, 37(4), 1-8. (in Chinese) |
[ 国际农业生物技术应用服务组织 ( 2017) 2016年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 37(4), 1-8.] | |
[13] | Kang L, Chen M ( 2013) GMO biosafety management, suggestions and biotech public acceptance in China. Plant Physiology Journal, 49, 637-644. (in Chinese with English abstract) |
[ 康乐, 陈明 ( 2013) 我国转基因作物安全管理体系介绍、发展建议及生物技术舆论导向. 植物生理学报, 49, 637-644.] | |
[14] | Li BP, Meng L, Wan FH ( 2002) The impact of insect resistant transgenic crops on natural enemies. Chinese Journal of Biological Control, 18, 97-105. (in Chinese with English abstract) |
[ 李保平, 孟玲, 万方浩 ( 2002) 转基因抗虫植物对天敌昆虫的影响. 中国生物防治学报, 18, 97-105.] | |
[15] | Li F, Sun HW, Zhao W, Yang SK, Lu XB ( 2013) Effects of herbicide-tolerant transgenic soybean on biodiversity of arthropod community in field. Shandong Agricultural Sciences, 45(7), 83-86. (in Chinese with English abstract) |
[ 李凡, 孙红炜, 赵维, 杨淑珂, 路兴波 ( 2013) 抗除草剂转基因大豆对田间节肢动物群落多样性的影响. 山东农业科学, 45(7), 83-86.] | |
[16] | Li LL, Wang ZY, He KL, Peng YF, Hua L ( 2004) Impact of the insect-resistant transgenic crops on non-target insects. Acta Ecologica Sinica, 24, 1793-1802. (in Chinese with English abstract) |
[ 李丽莉, 王振营, 何康来, 彭于发, 花蕾 ( 2004) 转基因抗虫作物对非靶标昆虫的影响. 生态学报, 24, 1793-1802.] | |
[17] | Li Q ( 2011) Species accumulation curves and its application. Chinese Journal of Applied Entomology, 48, 1882-1888. (in Chinese with English abstract) |
[ 李巧 ( 2011) 物种累积曲线及其应用. 应用昆虫学报, 48, 1882-1888.] | |
[18] |
Li YH, Zhang XJ, Chen XP, Romeis J, Yin XM, Peng YF ( 2015) Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). Scientific Reports, 5, 7679.
DOI |
[19] | Liu QS, Li YH, Chen XP, Peng YF ( 2014) Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies. Chinese Journal of Applied Ecology, 25, 2431-2439. (in Chinese with English abstract) |
[ 刘清松, 李云河, 陈秀萍, 彭于发 ( 2014) 转基因抗虫植物-植食性昆虫-天敌间化学通讯的研究进展. 应用生态学报, 25, 2431-2439.] | |
[20] |
Lu YH, Wu KM, Jiang YY, Xia B, Li P, Feng HQ, Kris AG, Guo YY ( 2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 328, 1151-1154.
DOI URL |
[21] | Magurran AE ( 2013) Measuring Biological Diversity. Blackwell Publishing, Oxford. |
[22] |
Marques LH, Santos AC, Castro BA, Storer NP, Babcock JM, Lepping MD, Fernandes OA ( 2018) Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PLoS ONE, 13, e0191567.
DOI URL |
[23] |
Marvier M, Mccreedy C, Regetz J, Kareiva P ( 2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science, 316, 1475-1477.
DOI URL |
[24] | Naranjo SE, Head G, Dively GP ( 2005) Field studies assessing arthropod nontarget effects in Bt transgenic crops: Introduction. Environmental Entomology, 34, 1178-1180. |
[25] | Ren ZT, Shen WJ, Liu B, Xue K ( 2017) Effects of transgenic maize on biodiversity of arthropod communities in the fields. Scientia Agricultura Sinica, 50, 2315-2325. (in Chinese with English abstract) |
[ 任振涛, 沈文静, 刘标, 薛堃 ( 2017) 转基因玉米对田间节肢动物群落多样性的影响. 中国农业科学, 50, 2315-2325.] | |
[26] |
Shen P, Zhang QY, Lin YH, Li WL, Li A, Song GW ( 2016) Thinking to promote the industrialization of genetically modified corn of our country. China Biotechnology, 36(4), 24-29. (in Chinese with English abstract)
DOI |
[ 沈平, 章秋艳, 林友华, 李文龙, 李昂, 宋贵文 ( 2016) 推进我国转基因玉米产业化的思考. 中国生物工程杂志, 36(4), 24-29.]
DOI |
|
[27] | Shetty MJ, Chandan K, Krishna HC, Aparna GS ( 2018) Genetically modified crops: An overview. Journal of Pharmacognosy and Phytochemistry, 7, 2405-2410. |
[28] |
Skoková HO, Svobodová Z, Spitzer L, Doleal P, Hussein HM, Sehnal F ( 2015) Communities of ground-dwelling arthropods in conventional and transgenic maize: Background data for the post-market environmental monitoring. Journal of Applied Entomology, 139, 31-45.
DOI URL |
[29] |
Storer NP, Babcock JM, Schlenz M, Meade T, Huckaba RM ( 2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103, 1031-1038.
DOI URL |
[30] |
Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y ( 2008) Insect resistance to Bt crops: Evidence versus theory. Nature Biotechnology, 26, 199-202.
DOI |
[31] | Wu L, Zhao QZ, Li DQ, Wang JR, Liu MF, Yang ZL ( 2016) Application of species accumulation curves in study on fruit flies in Nanting River basin. China Plant Protection, 36(8), 46-49. (in Chinese with English abstract) |
[ 吴岚, 赵琴植, 李德强, 汪金蓉, 刘梅芳, 杨子林 ( 2016) 物种累积曲线在南汀河流域实蝇调查研究中的应用. 中国植保导刊, 36(8), 46-49.] | |
[32] | Xue K, Zhang WG ( 2008) Non-target effects of transgenic plant: Transgenic Bt cotton. Journal of the Central University of Nationalities (Natural Sciences Edition), 17(Suppl.), 40-50. (in Chinese with English abstract) |
[ 薛堃, 张文国 ( 2008) 转基因植物的非靶标效应——以转Bt基因棉为例. 中央民族大学学报(自然科学版), 17(Suppl.), 40-50.] | |
[33] | Yang Y, Li YH, Cao FQ, Cheng LS, Peng YF ( 2014) Progress in the assessment of ecological effects of insect-resistant Bt crops on non-target of Lepidopteran insects. Journal of Biosafety, 23, 224-237. (in Chinese with English abstract) |
[ 杨艳, 李云河, 曹凤勤, 程立生, 彭于发 ( 2014) 转Bt基因抗虫作物对鳞翅目非靶标昆虫生态影响的研究进展. 生物安全学报, 23, 224-237.] | |
[34] | Yin JQ, Wu FC, Zhou L, Song XY ( 2017) Impacts of a transgenic insect-resistant maize (Bt-799) containing a Cry1Ac gene on arthropod biodiversity. Journal of Biosafety, 26, 159-167. (in Chinese with English abstract) |
[ 尹俊琦, 武奉慈, 周琳, 宋新元 ( 2017) 转Cry1Ac基因抗虫玉米Bt-799对田间节肢动物群落多样性的影响. 生物安全学报, 26, 159-167.] | |
[35] |
Zhang XJ, Li YH, Romeis J, Yin XM, Wu KM, Peng YF ( 2014) Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins. PLoS ONE, 9, e85395.
DOI URL |
[36] | Zhu Y, Jiang T, Yang YZ ( 2017) Research advances in arthropod community in corn fields. Plant Protection, 43(6), 1-5. (in Chinese with English abstract) |
[ 朱莹, 姜韬, 杨益众 ( 2017) 玉米田节肢动物群落研究进展. 植物保护, 43(6), 1-5.] | |
[37] | Zou Y, Sang WG, Wang SZ, Thomas EW, Liu YH, Yu ZR, Wang CL, Axmacher JC ( 2015) Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China. Ecology & Evolution, 5, 531-542. |
[1] | 张超 李娟 程海云 段家充 潘昭. 秦岭西段地区蝴蝶群落多样性与环境因子相关性[J]. 生物多样性, 2023, 31(1): 22272-. |
[2] | 王言一 张屹美 夏灿玮 Anders Pape M?ller. Alpha声学指数效用的meta分析[J]. 生物多样性, 2023, 31(1): 22369-. |
[3] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[4] | 孙翊斐 王士政 冯佳伟 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[5] | 张屹美 王言一 何衍 周冰 田苗 夏灿玮. Beta声学指数的特征和应用[J]. 生物多样性, 2023, 31(1): 22513-. |
[6] | 万霞, 张丽兵. 世界维管植物新分类群2021年年度报告[J]. 生物多样性, 2022, 30(8): 22116-. |
[7] | 张露丹, 卢影, 褚畅, 何巧巧, 姚志远. 2021年世界蜘蛛新分类单元[J]. 生物多样性, 2022, 30(8): 22163-. |
[8] | 郭淳鹏, 钟茂君, 汪晓意, 杨胜男, 唐科, 贾乐乐, 张春兰, 胡军华. 福建省两栖、爬行动物更新名录[J]. 生物多样性, 2022, 30(8): 22090-. |
[9] | 牛铜钢, 刘为. 双碳战略背景下城市生态系统的碳汇功能与生物多样性可以兼得[J]. 生物多样性, 2022, 30(8): 22168-. |
[10] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[11] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[12] | 宋蕊, 邓晶, 秦涛. 野生动物肇事公众责任保险发展困境与优化路径[J]. 生物多样性, 2022, 30(7): 22291-. |
[13] | 程卓, 张晴, 龙春林. 民族植物学研究现状(2017-2022)[J]. 生物多样性, 2022, 30(7): 22372-. |
[14] | 刘冰, 覃海宁. 中国高等植物多样性编目进展[J]. 生物多样性, 2022, 30(7): 22397-. |
[15] | 沈梅, 郭宁宁, 罗遵兰, 郭晓晨, 孙光, 肖能文. 基于eDNA metabarcoding探究北京市主要河流鱼类分布及影响因素[J]. 生物多样性, 2022, 30(7): 22240-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn