生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 535-544. DOI: 10.17520/biods.2018056
• 研究报告: 植物多样性 • 下一篇
马钦洪1,2,3, 李艳朋1,2,3, 练琚愉1,2, 叶万辉1,2,*()
收稿日期:
2018-02-12
接受日期:
2018-04-02
出版日期:
2018-06-20
发布日期:
2018-09-11
通讯作者:
叶万辉
作者简介:
# 共同第一作者
基金资助:
Qinhong Ma1,2,3, Yanpeng Li1,2,3, Juyu Lian1,2, Wanhui Ye1,2,*()
Received:
2018-02-12
Accepted:
2018-04-02
Online:
2018-06-20
Published:
2018-09-11
Contact:
Ye Wanhui
About author:
# Co-first authors
摘要:
理解群落结构和动态的主导机制是生态学研究的基本目标之一。群落内树种的存活受到其邻近树木的显著影响。为探究不同树种的存活对邻体组成的响应差异, 本研究基于鼎湖山南亚热带阔叶林20 ha森林动态监测样地中常见的90个树种的存活监测数据和功能性状数据, 建立了一系列关于邻体效应的树种存活模型。结果表明: 约58%的树种存活对邻体组成有敏感的响应, 共存树种间的功能性状差异影响着50%的树种存活动态。不同树种对邻体组成的响应差异与其耐阴性相关, 耐阴能力较弱的树种更倾向于表现出对邻体的敏感性。低比叶面积、高叶干物质含量、木材密度和最大胸径意味着较强的耐阴能力, 与光资源利用策略有关的生态位分化可能是邻域尺度上物种共存的原因。本研究为量化邻体间的相互作用和解释局域群落的物种共存提供了新的视角。
马钦洪, 李艳朋, 练琚愉, 叶万辉 (2018) 鼎湖山南亚热带常绿阔叶林不同树种存活对邻体组成的响应差异. 生物多样性, 26, 535-544. DOI: 10.17520/biods.2018056.
Qinhong Ma, Yanpeng Li, Juyu Lian, Wanhui Ye (2018) Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 26, 535-544. DOI: 10.17520/biods.2018056.
功能性状 Functional trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
比叶面积 Specific leaf area | 0.582 | -0.062 | 0.088 | 0.237 |
叶干物质含量 Leaf dry matter content | -0.367 | 0.489 | -0.059 | -0.178 |
叶面积 Leaf area | 0.289 | -0.378 | -0.558 | -0.337 |
叶片厚度 Leaf thickness | -0.366 | -0.512 | -0.273 | -0.282 |
叶绿素含量 Chlorophyll concentration | -0.339 | -0.324 | -0.177 | 0.816 |
木材密度 Wood density | -0.422 | -0.201 | 0.367 | -0.196 |
最大胸径 Maximum diameter at breast height | -0.126 | 0.455 | -0.66 | 0.121 |
累计解释量 Cumulative interpretation (%) | 33.2 | 56.6 | 71.7 | 82.1 |
表1 功能性状在PCA分析中各主成分(PC)的载荷值
Table 1 Factor loadings of the principal components of the PCA on functional traits
功能性状 Functional trait | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
比叶面积 Specific leaf area | 0.582 | -0.062 | 0.088 | 0.237 |
叶干物质含量 Leaf dry matter content | -0.367 | 0.489 | -0.059 | -0.178 |
叶面积 Leaf area | 0.289 | -0.378 | -0.558 | -0.337 |
叶片厚度 Leaf thickness | -0.366 | -0.512 | -0.273 | -0.282 |
叶绿素含量 Chlorophyll concentration | -0.339 | -0.324 | -0.177 | 0.816 |
木材密度 Wood density | -0.422 | -0.201 | 0.367 | -0.196 |
最大胸径 Maximum diameter at breast height | -0.126 | 0.455 | -0.66 | 0.121 |
累计解释量 Cumulative interpretation (%) | 33.2 | 56.6 | 71.7 | 82.1 |
模型 Model | 合计 Total | 绝对差异 Absolute difference | 等级差异 Hierarchical difference | |
---|---|---|---|---|
基本模型 Basic model | 38 | NA | NA | |
邻体等价模型 Neighbour equivalence model | 7 | NA | NA | |
同种密度效应模型 Onspecific density effect model | 5 | NA | NA | |
基于性状差异的模型 Models based on trait difference | 比叶面积 Specific leaf area | 6 | 6 | 0 |
叶干物质含量 Leaf dry matter content | 9 | 8 | 1 | |
叶面积 Leaf area | 8 | 6 | 2 | |
叶片厚度 Leaf thickness | 1 | 0 | 1 | |
叶绿素含量 Chlorophyll concentration | 6 | 5 | 1 | |
木材密度 Wood density | 3 | 0 | 3 | |
最大胸径 Maximum diameter at breast height | 4 | 4 | 0 | |
PCA轴1 PCA axis 1 | 1 | NA | NA | |
PCA轴1-4 PCA axes 1-4 | 2 | NA | NA | |
总计 Total | 90 | 29 | 8 |
表2 90个目标树种对存活候选模型的选择
Table 2 Selection of models on survival for 90 species
模型 Model | 合计 Total | 绝对差异 Absolute difference | 等级差异 Hierarchical difference | |
---|---|---|---|---|
基本模型 Basic model | 38 | NA | NA | |
邻体等价模型 Neighbour equivalence model | 7 | NA | NA | |
同种密度效应模型 Onspecific density effect model | 5 | NA | NA | |
基于性状差异的模型 Models based on trait difference | 比叶面积 Specific leaf area | 6 | 6 | 0 |
叶干物质含量 Leaf dry matter content | 9 | 8 | 1 | |
叶面积 Leaf area | 8 | 6 | 2 | |
叶片厚度 Leaf thickness | 1 | 0 | 1 | |
叶绿素含量 Chlorophyll concentration | 6 | 5 | 1 | |
木材密度 Wood density | 3 | 0 | 3 | |
最大胸径 Maximum diameter at breast height | 4 | 4 | 0 | |
PCA轴1 PCA axis 1 | 1 | NA | NA | |
PCA轴1-4 PCA axes 1-4 | 2 | NA | NA | |
总计 Total | 90 | 29 | 8 |
图1 对邻体组成的存活响应表现出不同敏感性的两组树种的多度分布, 其中黑色代表对邻体组成敏感的种组S, 灰色代表对邻体组成不敏感的种组IS, 虚线表示种组内物种多度的中位数。多度数据在分析前进行了对数转换。
Fig. 1 Distribution of abundance for species with different survival response sensitivity to neighborhood crowding are showed. Species sensitive to neighborhood crowding are in black while insensitive ones in grey. Median values of abundance are indicated in dashed lines. The abundance data were log transformed beforehand.
图2 对邻体组成的响应表现出不同敏感性的树种的耐阴性指数, IS和S分别表示对邻体不敏感和敏感的种组。
Fig. 2 Shade tolerance index of species with different response sensitivity to neighborhood crowding, where IS and S separately represent the species group insensitive and sensitive to neighborhood.
图3 树种耐阴性和功能性状之间的关系, A-G依次是比叶面积、叶干物质含量、叶面积、叶片厚度、叶绿素含量、木材密度和最大胸径, 其中比叶面积、叶面积和最大胸径在分析前进行了对数转换。虚线表示耐阴性指数随性状值的变化趋势。
Fig. 3 Relationship between shade tolerance index. (A) Specific leaf area (SLA); (B) Leaf dry matter content (LDMC); (C) Leaf area (LA); (D) Leaf thickness (LT); (E) Chlorophyll concentration (Chl); (F) Wood density (WD); (G) Maximum diameter at breast height (MDBH). Trends of shade tolerance index with each trait are indicated in dashed lines.
[1] | Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecology Letters, 16, 1294-1306. |
[2] | Bernard-Verdier M, Navas M, Vellend M, Violle C, Fayolle A, Garnier E (2012) Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433. |
[3] | Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32, 429-437. |
[4] | Canham CD, Papaik MJ, Uriarte M, McWilliams WH, Jenkins JC, Twery MJ (2006) Neighborhood analyses of canopy tree competition along environmental gradients in new England forests. Ecological Applications, 16, 540-554. |
[5] | Chen YX, Wright SJ, Muller-Landau HC, Hubbell SP, Wang YF, Yu SX (2016) Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 97, 776-785. |
[6] | Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332. |
[7] | Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334. |
[8] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[9] | Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Gunther A, Falczuk V, Ruger N, Mahecha MD, Gorne LD (2016) The global spectrum of plant form and function. Nature, 529, 167-171. |
[10] | Fortunel C, Valencia R, Wright SJ, Garwood NC, Kraft NJB (2016) Functional trait differences influence neighborhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 19, 1062-1070. |
[11] | Gravel D, Canham CD, Beaudet M, Messier C (2010) Shade tolerance, canopy gaps and mechanisims of coexistence of forest trees. Oikos, 119, 475-484. |
[12] | Han BC, Umaña MN, Mi XC, Liu XJ, Chen L, Wang YQ, Liang Y, Wei W, Ma KP (2017) The role of transcriptomes linked with responses to light environment on seedling mortality in a subtropical forest, China. Journal of Ecology, 105, 592-601. |
[13] | He FL, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 88, 676-688. |
[14] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248. |
[15] | HilleRisLambers J, Clark JS, Beckage B (2002) Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. |
[16] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859-875. |
[17] | Johnson DJ, Bourg NA, Howe R, McShea WJ, Wolf A, Clay K (2014) Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology, 95, 2493-2503. |
[18] | Kobe RK, Vriesendorp CF (2011) Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecology Letters, 14, 503-510. |
[19] | Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422. |
[20] | Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM, Fox J (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599. |
[21] | Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. |
[22] | Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Penuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Stahl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. |
[23] | Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840. |
[24] | Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait- mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, USA, 111, 5616-5621. |
[25] | Lasky JR, Bachelot B, Muscarella R, Schwartz N, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Zimmerman JK, Uriarte M (2015) Ontogenetic shifts in trait-mediated mechanisms of plant community assembly. Ecology, 96, 2157-2169. |
[26] | Ma L, Chen C, Shen Y, Wu LF, Huang ZL, Cao HL (2014) Determinants of tree survival at local scale in a sub-tropical forest. Ecological Research, 29, 69-80. |
[27] | Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093. |
[28] | McCarthy-Neumann S, Kobe R (2008) Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology, 89, 1883-1892. |
[29] | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[30] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. |
[31] | Peters HA (2003) Neighbour-regulated mortality: The influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765. |
[32] | Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manriques G, Harms KE, Licona JC, Martinez- Ramos M, Mazer SJ, Muller-Landau HC, Pena-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology, 89, 1908-1920. |
[33] | R Core Team (2018) R: A Language and Environment for Statistical Computing.R foundation for statistical computing, Vienna, Austria.. (accessed on 2018-03-12) |
[34] | Shen Y, Santiago LS, Ma L, Lin GJ, Lian JY, Cao HL, Ye WH (2013) Forest dynamics of a subtropical monsoon forest in Dinghushan, China: Recruitment, mortality and the pace of community change. Journal of Tropical Ecology, 29, 131-145. |
[35] | Shen Y, Santiago LS, Shen H, Ma L, Lian JY, Cao HL, Lu HP, Ye WH (2014) Determinants of change in subtropical tree diameter growth with ontogenetic stage. Oecologia, 175, 1315-1324. |
[36] | Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661. |
[37] | Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048-3062. |
[38] | Uriarte M, Canham CD, Thompson J, Zimmerman JK (2004a) A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecological Monographs, 74, 591-614. |
[39] | Uriarte M, Condit R, Canham CD, Hubbell SP (2004b) A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter? Journal of Ecology, 92, 348-360. |
[40] | Uriarte M, Swenson NG, Chazdon RL, Comita LS, Kress WJ, Erickson D, Forero-Montana J, Zimmerman JK, Thompson J (2010) Trait similarity, shared ancestry and the structure of neighborhood interactions in a subtropical wet forest: Implications for community assembly. Ecology Letters, 13, 1503-1514. |
[41] | Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257. |
[42] | Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest. PLoS ONE, 7, 10. |
[43] | Wiegand T, Uriarte M, Kraft NJB, Shen GC, Wang XG, He FL (2017) Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annual Review of Ecology, Evolution, and Systematics, 48, 329-351. |
[44] | Wright SJ (2002) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1-14. |
[45] | Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674. |
[46] | Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84, 3174-3185. |
[47] | Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM (2008) Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China. Journal of Plant Ecology (Chinese Version), 32, 274-286. (in Chinese with English abstract) |
[叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 (2008) 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.] | |
[48] | Zambrano J, Marchand P, Swenson NG (2017) Local neighborhood and regional climatic contexts interact to explain tree performance. Proceedings of the Royal Society B: Biological Sciences, 284, 20170523. |
[49] | Zhu Y, Hogan JA, Cai HY, Xun YH, Jiang F, Jin GZ (2017) Biotic and abiotic drivers of the tree growth and mortality trade-off in an old-growth temperate forest. Forest Ecology and Management, 404, 354-360. |
[1] | 任嘉隆, 王永珍, 冯怡琳, 赵文智, 严祺涵, 秦畅, 方静, 辛未冬, 刘继亮. 基于陷阱法采集的河西走廊戈壁荒漠甲虫数据集[J]. 生物多样性, 2024, 32(2): 23375-. |
[2] | 薛玉洁, 程安鹏, 李珊, 刘晓娟, 李景文. 亚热带森林中环境和物种多样性对灌木存活的影响[J]. 生物多样性, 2023, 31(3): 22443-. |
[3] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[4] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[5] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[6] | 付飞, 魏慧玉, 常育腾, 王备新, 陈凯. 澜沧江中游水生昆虫生活史和生态学性状多样性的海拔格局: 气候和土地利用的影响[J]. 生物多样性, 2022, 30(5): 21332-. |
[7] | 林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮. 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素[J]. 生物多样性, 2022, 30(12): 22343-. |
[8] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[9] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[10] | 李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186-1197. |
[11] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[12] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[13] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[14] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[15] | 王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜. 微生境对黄梅秤锤树野生种群叶片功能性状的影响[J]. 生物多样性, 2020, 28(3): 277-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn