生物多样性 ›› 2018, Vol. 26 ›› Issue (2): 130-137. DOI: 10.17520/biods.2017078
所属专题: 青藏高原生物多样性与生态安全
于海彬1,2, 张镱锂1,3,*(), 刘林山1, 陈朝4, 祁威1
收稿日期:
2017-03-14
接受日期:
2017-07-01
出版日期:
2018-02-20
发布日期:
2018-05-05
通讯作者:
张镱锂
作者简介:
# 共同第一作者
基金资助:
Haibin Yu1,2, Yili Zhang1,3,*(), Linshan Liu1, Zhao Chen4, Wei Qi1
Received:
2017-03-14
Accepted:
2017-07-01
Online:
2018-02-20
Published:
2018-05-05
Contact:
Zhang Yili
About author:
# Co-first authors
摘要:
青藏高原拥有丰富的种子植物, 但对该地区特有植物的区系特征以及多样性还鲜有报道。本文通过植物志(书)以及在线数据库, 整理了只分布于青藏高原地区的种子植物名录及其地理分布, 分析了它们的科属特征、区系成分以及多样性空间分布格局。结果表明: 青藏高原共有特有种子植物3,764种, 隶属113科519属, 多数为草本植物(76.3%); 包含100种以上的科有菊科、毛茛科、列当科等15个, 属有马先蒿属(Pedicularis)、杜鹃花属(Rhododendron)、紫堇属(Corydalis)等7个; 从属的区系成分来看, 温带成分占主导(67.5%)。青藏高原特有植物多样性格局呈现从高原东南部向西北部逐渐递减的趋势, 其中东喜马拉雅-横断山脉的物种多样性非常丰富, 而且多数物种分布在高原的中海拔地带。理解青藏高原特有物种的特征及多样性格局对探讨高原植物区系的演化历史和物种保护有重要启示。
于海彬, 张镱锂, 刘林山, 陈朝, 祁威 (2018) 青藏高原特有种子植物区系特征及多样性分布格局. 生物多样性, 26, 130-137. DOI: 10.17520/biods.2017078.
Haibin Yu, Yili Zhang, Linshan Liu, Zhao Chen, Wei Qi (2018) Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau. Biodiversity Science, 26, 130-137. DOI: 10.17520/biods.2017078.
图1 青藏高原含50个特有种以上科(a)和含30个特有种以上属(b)及其所占的比例。科属前面的数字代表它们包含的物种数。
Fig. 1 Percentages of families containing over 50 endemic species (a) and genera containing over 30 endemic species (b) on the Tibetan Plateau. The numbers before family or genus represent number of species they contain.
分布类型 Areal type | 属数 Number of genera | 百分比 % | |
---|---|---|---|
1 | 世界分布 Cosmopolitan | 40 | 7.7 |
2 | 泛热带 Pantropic | 45 | 8.7 |
3 | 东亚及热带美洲间断 Tropical Asia and Tropical America disjunction | 9 | 1.7 |
4 | 旧世界热带 Old World Tropic | 16 | 3.1 |
5 | 热带亚洲至热带大洋洲 Tropical Asia to Tropical Australia | 15 | 2.9 |
6 | 热带亚洲至热带非洲 Tropical Asia to Tropical Africa | 13 | 2.5 |
7 | 热带亚洲 Tropical Asia | 31 | 5.9 |
热带成分小计(2-7) Subtotal in tropical elements (types 2-7) | 129 | 24.8 | |
8 | 北温带 North Temperate | 131 | 25.2 |
9 | 东亚及北美间断 East Asia and North America disjunction | 20 | 3.9 |
10 | 旧世界温带 Old World Temperate | 50 | 9.7 |
11 | 温带亚洲 Temperate Asia | 11 | 2.1 |
12 | 地中海、西亚至中亚 Mediterranean, West Asia to Central Asia | 10 | 1.9 |
13 | 中亚 Central Asia | 19 | 3.6 |
14 | 东亚 East Asia | 65 | 12.6 |
15 | 中国特有 Endemic to China | 44 | 8.5 |
温带成分小计(8-15) Subtotal in temperate elements (types 8-15) | 350 | 67.5 | |
总计 Total | 519 | 100.0 |
表1 青藏高原特有种子植物属的分布区类型
Table 1 Areal types for the genera of seed plants endemic to the Tibetan Plateau
分布类型 Areal type | 属数 Number of genera | 百分比 % | |
---|---|---|---|
1 | 世界分布 Cosmopolitan | 40 | 7.7 |
2 | 泛热带 Pantropic | 45 | 8.7 |
3 | 东亚及热带美洲间断 Tropical Asia and Tropical America disjunction | 9 | 1.7 |
4 | 旧世界热带 Old World Tropic | 16 | 3.1 |
5 | 热带亚洲至热带大洋洲 Tropical Asia to Tropical Australia | 15 | 2.9 |
6 | 热带亚洲至热带非洲 Tropical Asia to Tropical Africa | 13 | 2.5 |
7 | 热带亚洲 Tropical Asia | 31 | 5.9 |
热带成分小计(2-7) Subtotal in tropical elements (types 2-7) | 129 | 24.8 | |
8 | 北温带 North Temperate | 131 | 25.2 |
9 | 东亚及北美间断 East Asia and North America disjunction | 20 | 3.9 |
10 | 旧世界温带 Old World Temperate | 50 | 9.7 |
11 | 温带亚洲 Temperate Asia | 11 | 2.1 |
12 | 地中海、西亚至中亚 Mediterranean, West Asia to Central Asia | 10 | 1.9 |
13 | 中亚 Central Asia | 19 | 3.6 |
14 | 东亚 East Asia | 65 | 12.6 |
15 | 中国特有 Endemic to China | 44 | 8.5 |
温带成分小计(8-15) Subtotal in temperate elements (types 8-15) | 350 | 67.5 | |
总计 Total | 519 | 100.0 |
图2 基于县域尺度(a)和植物区系区尺度(b)的青藏高原特有种子植物多样性分布格局。图中编号对应附录1中的县级行政区名称和植物区系区名称。
Fig. 2 Diversity patterns of endemic seed plants on the Tibetan Plateau at the county level (a) and floristic level (b). The codes correspond to the name of county and floristic region on the Tibetan Plateau in Appendix 1.
图3 垂直方向上不同生长型特有物种的丰富度格局。(a)所有物种; (b)草本; (c)灌木; (d)乔木。
Fig. 3 Species richness of different growth forms of endemic seed plants along elevational gradients. (a), All species; (b), Herb; (c), Shrub; (d), Tree.
[1] | APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
[2] | Chen SB, Ouyang ZY, Fang Y, Li ZJ (2011) Geographic pat¬terns of endemic seed plant genera diversity in China. Bio¬diversity Science, 19, 414-423. (in Chinese with English abstract) |
[陈圣宾, 欧阳志云, 方瑜, 李振基 (2011) 中国种子植物特有属的地理分布格局. 生物多样性, 19, 414-423.] | |
[3] | Cun YZ, Wang XQ (2010) Plant recolonization in the Hima¬laya from the southeastern Qinghai-Tibetan Plateau: Geo¬graphical isolation contributed to high population differen¬tiation. Molecular Phylogenetics and Evolution, 56, 972-982. |
[4] | Favre A, Michalak I, Chen CH, Wang JC, Pringle JS, Matuszak S, Sun H, Yuan Y, Struwe L, Muellner-Riehl AN (2016) Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). Journal of Biogeography, 43, 1967-1978. |
[5] | Feng G, Mao LF, Sandel B, Swenson N, Svenning J (2016) High plant endemism in China is partially linked to reduced glacial-interglacial climate change. Journal of Biogeogra¬phy, 43, 145-154. |
[6] | Gao QB, Li YH, Gornall RJ, Zhang ZX, Zhang FQ, Xing R, Fu PC, Wang JL, Liu HR, Tian ZZ, Chen SL (2015) Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon, 64, 703-713. |
[7] | Huang JH, Chen JH, Ying JS, Ma KP (2011) Features and dis¬tribution patterns of Chinese endemic seed plant species. Journal of Systematics and Evolution, 49, 81-94. |
[8] | Huang JH, Huang JH, Liu CR, Zhang JL, Lu XH, Ma KP (2016) Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biological Conservation, 198, 104-112. |
[9] | Huang JH, Ma KP, Chen B (2014) Diversity and Geographical Distributions of Chinese Endemic Seed Plants. Higher Education Press, Beijing. (in Chinese) |
[黄继红, 马克平, 陈彬 (2014) 中国特有种子植物的多样性及其地理分布. 高等教育出版社, 北京.] | |
[10] | Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endem¬ism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences, USA, 106, 9322-9327. |
[11] | Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Acad¬emy of Sciences, USA, 104, 5925-5930. |
[12] | Liu B, Ye JF, Liu S, Wang Y, Yang Y, Lai YJ, Zeng G, Lin QW (2015) Families and genera of Chinese angiosperms: A synoptic classification based on APG III. Biodiversity Science, 23, 225-231. (in Chinese with English abstract) |
[刘冰, 叶建飞, 刘夙, 汪远, 杨永, 赖阳均, 曾刚, 林秦文 (2015) 中国被子植物科属概览: 依据APG III系统. 生物多样性, 23, 225-231.] | |
[13] | Liu JQ, Duan YW, Hao G, Ge XJ, Sun H (2014) Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. Journal of Systematics and Evolu¬tion, 52, 241-249. |
[14] | López Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011) Centres of plant endemism in China: Places for survival or for speciation? Journal of Biogeography, 38, 1267-1280. |
[15] | Mao LF, Chen SB, Zhang JL, Hou YH, Zhou GS, Zhang XS (2013) Vascular plant diversity on the roof of the world: Spatial patterns and environmental determinants. Journal of Systematics and Evolution, 51, 371-381. |
[16] | Matuszak S, Muellner Riehl AN, Sun H, Favre A (2016) Dis¬persal routes between biodiversity hotspots in Asia: The case of the mountain genus Tripterospermum (Gentianinae, Gentianaceae) and its close relatives. Journal of Biogeography, 43, 580-590. |
[17] | Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. |
[18] | Qiu YX, Fu CX, Comes HP (2011) Plant molecular phy¬logeography in China and adjacent regions: Tracing the ge¬netic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mo¬lecular Phylogenetics and Evolution, 59, 225-244. |
[19] | R Core Team (2016) R: A language and environment for statis¬tical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. (accessed on 2016-11-10) |
[20] | Ren G, Conti E, Salamin N (2015) Phylogeny and biogeography of Primula sect. Armerina: Implications for plant evolu¬tion under climate change and the uplift of the Qinghai- Ti¬bet Plateau. BMC Evolutionary Biology, 15, 161. |
[21] | Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Suth¬erland WJ, Svenning J (2011) The influence of Late Qua¬ternary climate-change velocity on species endemism. Sci¬ence, 334, 660-664. |
[22] | Shi YF, Li JJ, Li BY (1998) Uplift and Environmental Changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guang¬dong Science and Technology Press, Guangzhou. (in Chinese) |
[施雅风, 李吉均, 李炳元 (1998) 青藏高原晚新生代隆升与环境变化. 广东科技出版社, 广州.] | |
[23] | Svenning J, Skov F (2004) Limited filling of the potential range in European tree species. Ecology Letters, 7, 565-573. |
[24] | The Comprehensive Scientific Expedition to the Qinghai Xi¬zang Plateau, Chinese Academy of Sciences(1993) Vascular Plants of the Hengduan Mountains, Vol. 1. Science Press, Beijing. (in Chinese) |
[中国科学院青藏高原综合科学考察队(1993) 横断山区维管植物(上册). 科学出版社, 北京.] | |
[25] | The Comprehensive Scientific Expedition to the Qinghai Xi¬zang Plateau, Chinese Academy of Sciences (1994) Vascu¬lar Plants of the Hengduan Mountains, Vol. 2. Science Pre¬ss, Beijing. (in Chinese) |
[中国科学院青藏高原综合科学考察队(1994) 横断山区维管植物(下册). 科学出版社, 北京.] | |
[26] | Thorne RF (1999) Eastern Asia as a living museum for archaic angiosperms and other seed plants. Taiwania, 44, 413-422. |
[27] | Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeog¬raphy, 11, 291-301. |
[28] | Wang HS (1999) The evolution and sources of North China’s flora. Acta Geographica Sinica, 54, 213-223. (in Chinese with English abstract) |
[王荷生 (1999) 华北植物区系的演变和来源. 地理学报, 54, 213-223.] | |
[29] | Wang ZH, Tang ZY, Fang JY (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854. |
[30] | Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolution¬ary diversifications of plants on the Qinghai-Tibetan Plat¬eau. Frontiers in Genetics, 5, 4. |
[31] | Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecol¬ogy and species richness. Trends in Ecology and Evolution, 19, 639-644. |
[32] | Wu YH (1995) The floristic characteristics in the source area of the Yellow River in China. Acta Botanica Boreali- Occ¬identalia Sinica, 15, 82-89. (in Chinese with English ab¬s¬tract) |
[吴玉虎 (1995) 黄河源头地区植物的区系特征. 西北植物学报, 15, 82-89.] | |
[33] | Wu YH (2000) The floristic characteristics in the source area of Changjiang (Yangtze) River. Acta Botanica Boreali- Occi¬dentalia Sinica, 20, 1086-1101. (in Chinese with Eng¬lish abstract) |
[吴玉虎 (2000) 长江源区植物区系特征. 西北植物学报, 20, 1086-1101.] | |
[34] | Wu YH (2008) The Vascular Plants and Their Eco-geogr¬¬aphical Distribution of the Qinghai-Tibetan Plateau. Science Press, Beijing. (in Chinese) |
[吴玉虎 (2008) 青藏高原维管植物及其生态地理分布. 科学出版社, 北京.] | |
[35] | Wu YH (2009) Floristic study on the source area of Lancang¬jiang (Mekong River), China. Journal of Wuhan Botanical Research, 27, 277-289. (in Chinese with English abstract) |
[吴玉虎 (2009) 澜沧江源区种子植物区系研究. 武汉植物学研究, 27, 277-289.] | |
[36] | Wu ZY (1998) Flora of Tibet. Science Press, Beijing. (in Chi¬nese) |
[吴征镒 (1998) 西藏植物志. 科学出版社, 北京.] | |
[37] | Wu ZY, Sun H, Zhou ZK, Li DZ, Peng H (2010) Floristics of Seed Plants from China. Science Press, Beijing. (in Chinese) |
[吴征镒, 孙航, 周浙昆, 李德铢, 彭华 (2010) 中国种子植物区系地理. 科学出版社, 北京.] | |
[38] | Wu ZY, Zhou ZK, Sun H, Li DZ, Peng H (2006) The Areal- types of Seed Plants and Their Origin and Differentiation. Yunnan Science and Technology Press, Kunming. (in Chi¬nese) |
[吴征镒, 周浙昆, 孙航, 李德铢, 彭华 (2006) 种子植物分布区类型及其起源和分化. 云南科技出版社, 昆明.] | |
[39] | Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, USA, 114, 3444-3451. |
[40] | Xu B, Li ZM, Sun H (2014) Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains, SW China. Journal of Systematics and Evolu¬tion, 52, 271-279. |
[41] | Yan YJ, Yang X, Tang ZY (2013) Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai- Tibetan Plateau. Ecology and Evolution, 3, 4584-4595. |
[42] | Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Molecular Ecology, 17, 5135-5145. |
[43] | Yang WJ, Ma KP, Kreft H (2013) Geographical sampling bias in a large distributional database and its effects on species richness-environment models. Journal of Biogeography, 40, 1415-1426. |
[44] | Yu HB, Zhang YL, Liu LS, Qi W, Li SC, Hu ZJ (2015) Com¬bining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the Late Quaternary in Himalayan hemlock. Ecology and Evolution, 5, 5781-5791. |
[45] | Yu HB, Zhang YL, Wang ZF, Liu LS, Chen Z, Qi W (2017) Diverse range dynamics and routes of plants on the Tibetan Plateau during the Late Quaternary. PLoS ONE, 12, e0177101. |
[46] | Yu WB, Liu ML, Wang H, Mill RR, Lee RH, Yang JB, Li DZ (2015) Towards a comprehensive phylogeny of the large temperate genus Pedicularis (Orobanchaceae), with an emphasis on species from the Himalaya-Hengduan Mountains. BMC Plant Biology, 15, 176. |
[47] | Zhang DC, Ye JX, Sun H (2016) Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. Journal of Biogeography, 43, 2465-2476. |
[48] | Zhang JQ, Meng SY, Allen GA, Wen J, Rao GY (2014) Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Molecular Phylogenetics and Evolution, 77, 147-158. |
[49] | Zhang YL, Li BY, Zheng D (2002) A discussion on the bound¬ary and area of the Tibetan Plateau in China. Geographical Research, 21, 1-8. (in Chinese with English abstract) |
[张镱锂, 李炳元, 郑度 (2002) 论青藏高原范围与面积. 地理研究, 21, 1-8.] | |
[50] | Zhu H (2015) Biogeography of Shangri-la flora in southwestern China. Phytotaxa, 203, 231-244. |
[1] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[2] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[3] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[4] | 陈嘉珈, 蒲真, 黄中鸿, 于凤琴, 张建军, 许东华, 徐俊泉, 尚鹏, 地里木拉提∙帕尔哈提, 李耀江, Jigme Tshering, 郭玉民. 全球黑颈鹤越冬种群分布与数量[J]. 生物多样性, 2023, 31(6): 22400-. |
[5] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
[6] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
[7] | 丁炳扬, 金孝锋, 张永华, 李根有, 陈征海, 张方钢. 浙江野生种子植物的分布格局与区系分区[J]. 生物多样性, 2023, 31(4): 22515-. |
[8] | 龚心语, 黄宝荣. 国家公园全民公益性评估指标体系: 以青藏高原国家公园群为例[J]. 生物多样性, 2023, 31(3): 22571-. |
[9] | 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化[J]. 生物多样性, 2023, 31(12): 23262-. |
[10] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[11] | 王健铭, 曲梦君, 王寅, 冯益明, 吴波, 卢琦, 何念鹏, 李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素[J]. 生物多样性, 2022, 30(6): 21503-. |
[12] | 沈国平, 韩睿, 缪增强, 邢江娃, 李永臻, 王嵘, 朱德锐. 青藏高原4类典型水化学特征湖泊的细菌多样性差异及影响因素[J]. 生物多样性, 2022, 30(4): 21420-. |
[13] | 赵仁生, 许诗嘉, 宋鹏飞, 周翔, 张亚洲, 袁燕. 青藏高原药用植物分布格局及保护优先区[J]. 生物多样性, 2022, 30(4): 21385-. |
[14] | 秦乐, 朱彦鹏, 任月恒, 李博炎, 付梦娣, 李俊生. 青藏高原国家级自然保护区管理能力差异及其对保护成效的影响[J]. 生物多样性, 2022, 30(11): 22419-. |
[15] | 贾林波, 苏涛, 李伟成, 李树峰, 黄永江, 周浙昆. 我国西南植物区系的分异: 椿榆属和臭椿属化石的启示[J]. 生物多样性, 2022, 30(11): 22348-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn