生物多样性 ›› 2016, Vol. 24 ›› Issue (6): 629-638. DOI: 10.17520/biods.2016112
方晓峰1,2,3, 杨庆松1,3, 刘何铭1,3, 马遵平1,3, 董舒1,3, 曹烨1,3, 袁铭皎1,3, 费希旸1,3, 孙小颖1,3, 王希华1,3,,A;*()
收稿日期:
2016-04-26
接受日期:
2016-06-06
出版日期:
2016-06-20
发布日期:
2016-06-20
通讯作者:
王希华
基金资助:
Xiaofeng Fang1,2,3, Qingsong Yang1,3, Heming Liu1,3, Zunping Ma1,3, Shu Dong1,3, Ye Cao1,3, Mingjiao Yuan1,3, Xiyang Fei1,3, Xiaoying Sun1,3, Xihua Wang1,3,*()
Received:
2016-04-26
Accepted:
2016-06-06
Online:
2016-06-20
Published:
2016-06-20
Contact:
Wang Xihua
摘要:
物种多度分布是对群落内不同物种多度情况的数量描述, 作为理解群落性质的基石, 其形成机制受到广泛关注。常绿与落叶物种是两类有着不同物候性状与生长策略的物种集合, 它们普遍共存于常绿阔叶林中。在天童20 ha常绿阔叶林动态监测样地内, 虽然常绿物种在物种多度和胸高断面积等指标上占有绝对优势, 但其在物种丰富度上却不及落叶物种。分析两者在常绿阔叶林中的物种多度分布特征, 能够为理解常绿阔叶林内物种多样性的维持机制提供一个全新的视角。为此, 我们基于天童样地的植被调查数据, 一方面利用累积经验分布函数对两类生活型植物的物种多度分布进行描述, 使用Kolmogorov-Smirnov检验(K-S检验)判断其差异性; 另一方面, 采用纯统计模型、生态位模型和中性理论模型对二者的物种多度分布曲线进行拟合, 并基于K-S检验的结果以及AIC值进行最优模型的筛选。结果显示: (1)常绿与落叶物种的物种多度分布曲线间并无显著差异。(2)在选用的3类模型中, 中性理论模型对于两类物种多度分布曲线的拟合效果都最好, 而生态位模型的拟合效果则一般。从上述结果可以看出, 尽管常绿与落叶物种在物种数量和多度等方面均存在差异, 但它们却有着近似的物种多度分布格局以及相近的多样性维持机制。然而, 鉴于模型拟合的结果只能作为理解群落多样性构建机制的必要非充分条件, 故而只能初步判定中性过程对于常绿与落叶物种的物种多样性格局影响更大, 却不能排除或衡量诸如生态位分化等其他过程在两类生活型多样性格局形成中的贡献。
方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华 (2016) 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局. 生物多样性, 24, 629-638. DOI: 10.17520/biods.2016112.
Xiaofeng Fang, Qingsong Yang, Heming Liu, Zunping Ma, Shu Dong, Ye Cao, Mingjiao Yuan, Xiyang Fei, Xiaoying Sun, Xihua Wang (2016) Distribution of species abundance of evergreen and deciduous woody plants in the evergreen broad-leaved forests at Tiantong, Zhejiang. Biodiversity Science, 24, 629-638. DOI: 10.17520/biods.2016112.
图1 天童20 ha常绿阔叶林样地内常绿与落叶物种的累积经验分布函数。虚线与实线均为局部加权多项式的拟合线。
Fig. 1 The empirical cumulative distribution function of evergreen and deciduous woody plants in Tiantong 20 ha evergreen broad-leaved forest plot. The dashed and solid lines are fitted by local polynomial regression (LOESS).
生活型 Life form | 模型 Model | AIC | D | P |
---|---|---|---|---|
常绿物种 Evergreen species | 对数正态模型 Log-normal model | 1,047.339 | 0.096 | 0.875 |
对数级数模型 Log-series model | 1,038.469 | 0.164 | 0.257 | |
断棍模型 Broken-stick model | 515,693.701 | 0.425 | < 0.001 | |
生态位优先占领模型 Niche preemption model | 1,184.975 | 0.137 | 0.458 | |
复合群落零和多项式模型 Metacommunity zero-sum multinominal distribution model | 1,038.246 | 0.164 | 0.244 | |
Volkov模型 Volkov model | 1,037.823 | 0.082 | 0.938 | |
落叶物种 Deciduous species | 对数正态模型 Log-normal model | 821.012 | 0.089 | 0.878 |
对数级数模型 Log-series model | 813.648 | 0.089 | 0.862 | |
断棍模型 Broken-stick model | 54,244.512 | 0.316 | < 0.001 | |
生态位优先占领模型 Niche preemption model | 895.503 | 0.152 | 0.296 | |
复合群落零和多项式模型 Metacommunity zero-sum multinominal distribution model | 813.426 | 0.089 | 0.857 | |
Volkov模型 Volkov model | 812.326 | 0.051 | 0.999 |
表1 6个模型对常绿与落叶物种的物种-多度分布拟合优度检验
Table 1 Goodness-of-fit test of six models for the species-abundance distribution of evergreen and deciduous woody plants
生活型 Life form | 模型 Model | AIC | D | P |
---|---|---|---|---|
常绿物种 Evergreen species | 对数正态模型 Log-normal model | 1,047.339 | 0.096 | 0.875 |
对数级数模型 Log-series model | 1,038.469 | 0.164 | 0.257 | |
断棍模型 Broken-stick model | 515,693.701 | 0.425 | < 0.001 | |
生态位优先占领模型 Niche preemption model | 1,184.975 | 0.137 | 0.458 | |
复合群落零和多项式模型 Metacommunity zero-sum multinominal distribution model | 1,038.246 | 0.164 | 0.244 | |
Volkov模型 Volkov model | 1,037.823 | 0.082 | 0.938 | |
落叶物种 Deciduous species | 对数正态模型 Log-normal model | 821.012 | 0.089 | 0.878 |
对数级数模型 Log-series model | 813.648 | 0.089 | 0.862 | |
断棍模型 Broken-stick model | 54,244.512 | 0.316 | < 0.001 | |
生态位优先占领模型 Niche preemption model | 895.503 | 0.152 | 0.296 | |
复合群落零和多项式模型 Metacommunity zero-sum multinominal distribution model | 813.426 | 0.089 | 0.857 | |
Volkov模型 Volkov model | 812.326 | 0.051 | 0.999 |
图2 天童20 ha常绿阔叶林样地内常绿与落叶物种的物种多度分布及模型拟合。观测值用空心点表示。
Fig. 2 The species-abundance distribution and model fitting for evergreen and deciduous woody plants in Tiantong 20 ha evergreen broad-leaved forest plot. Observed values are shown as open circles. MZD model, metacommunity zero-sum multinomial distribution model.
生活型 Life form | 复合群落零和多项式模型 Metacommunity zero-sum multinomial distribution model | Volkov模型 Volkov model | ||||
---|---|---|---|---|---|---|
基本多样性指数 Fundamental biodiversity number (θ) | 基本多样性指数 Fundamental biodiversity number (θ) | 迁移系数 Immigration rate (m) | ||||
常绿物种 Evergreen species | 7.872 | 11.163 | 0.023 | |||
落叶物种 Deciduous species | 12.118 | 14.119 | 0.248 |
表2 中性模型拟合的常绿与落叶物种的物种多度分布参数
Table 2 Parameters of two neutral models in fitting the species-abundance distribution of evergreen and deciduous woody plants
生活型 Life form | 复合群落零和多项式模型 Metacommunity zero-sum multinomial distribution model | Volkov模型 Volkov model | ||||
---|---|---|---|---|---|---|
基本多样性指数 Fundamental biodiversity number (θ) | 基本多样性指数 Fundamental biodiversity number (θ) | 迁移系数 Immigration rate (m) | ||||
常绿物种 Evergreen species | 7.872 | 11.163 | 0.023 | |||
落叶物种 Deciduous species | 12.118 | 14.119 | 0.248 |
[1] | Alonso D, McKane AJ (2004) Sampling Hubbell’s neutral model of biodiversity. Ecology Letters, 7, 901-910. |
[2] | Alonso D, Ostling A, Etienne RS (2008) The implicit assumption of symmetry and the species abundance distribution. Ecology Letters, 11, 93-105. |
[3] | Bai K, He C, Wan X, Jiang D (2015) Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB Plants, 7, plv064. |
[4] | Bar-Massada A, Kent R, Carmel Y (2014) Environmental heterogeneity affects the location of modelled communities along the niche-neutrality continuum. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20133249. |
[5] | Borda-de-Água L, Borges Paulo AV, Hubbell SP, Pereira HM (2012) Spatial scaling of species abundance distributions. Ecography, 35, 549-556. |
[6] | Cheng JJ, Mi XC, Ma KP, Zhang JT (2011) Responses of species-abundance distribution to varying sampling scales in a subtropical broad-leaved forest. Biodiversity Science, 19, 168-177. (in Chinese with English abstract) |
[程佳佳, 米湘成, 马克平, 张金屯 (2011) 亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应. 生物多样性, 19, 168-177.] | |
[7] | Cheng JJ, Mi XC, Nadrowski K, Ren HB, Zhang JT, Ma KP (2012) Separating the effect of mechanisms shaping species-abundance distributions at multiple scales in a subtropical forest. Oikos, 121, 236-244. |
[8] | Chisholm RA, Pacala SW (2010) Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences, USA, 107, 15821-15825. |
[9] | Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from coastal California woody plants. Journal of Ecology, 98, 814-821. |
[10] | Fang S, Yuan ZQ, Lin F, Ye J, Hao ZQ, Wang XG (2014) Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China. Chinese Science Bulletin, 59, 2342-2348. (in Chinese with English abstract) |
[房帅, 原作强, 蔺菲, 叶吉, 郝占庆, 王绪高 (2014) 长白山阔叶红松林木本植物系统发育与功能性状结构. 科学通报, 59, 2342-2348.] | |
[11] | Fisher CK, Mehta P (2014) The transition between the niche and neutral regimes in ecology. Proceedings of the National Academy of Sciences, USA, 111, 13111-13116. |
[12] | Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42-58. |
[13] | Gray JS, Bjørgesæter A, Ugland KI (2006) On plotting species abundance distributions. Journal of Animal Ecology, 75, 752-756. |
[14] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey. |
[15] | Liu CR, Ma KP, Zhou WN (1995) Measurement of biotic community diversity. III. Statistical issue related to species- abundance distribution. Chinese Biodiversity, 3, 157-169. (in Chinese) |
[刘灿然, 马克平, 周文能 (1995) 生物群落多样性的测度方法.III. 与物种-多度分布模型有关的统计问题. 生物多样性, 3, 157-169.] | |
[16] | Ma KM (2003) Advances of the study on species abundance pattern. Acta Phytoecologica Sinica, 27, 412-426. (in Chinese with English abstract) |
[马克明 (2003) 物种多度格局研究进展. 植物生态学报, 27, 412-426.] | |
[17] | MacArthur RH (1957) On the relative abundance of bird species. Proceedings of the National Academy of Sciences, USA, 43, 293-295. |
[18] | Magurran AE (2005) Species abundance distributions: pattern or process? Functional Ecology, 19, 177-181. |
[19] | Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714-716. |
[20] | Matthews TJ, Borges Paulo AV, Whittaker RJ (2014) Multimodal species abundance distributions: a deconstruction approach reveals the processes behind the pattern. Oikos, 123, 533-544. |
[21] | Matthews TJ, Whittaker RJ (2014) Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecology and Evolution, 4, 2263-2277. |
[22] | Matthews TJ, Whittaker RJ (2015) On the species abundance distribution in applied ecology and biodiversity management. Journal of Applied Ecology, 52, 443-454. |
[23] | McEwan R, Muller R (2011) Dynamics, diversity, and resource gradient relationships in the herbaceous layer of an old-growth Appalachian forest. Plant Ecology, 212, 1179-1191. |
[24] | McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He FL, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995-1015. |
[25] | McGill BJ(2010) Species abundance distributions. In: Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran AE, McGill BJ). Oxford University Press, New York. |
[26] | Motonura I (1932) On the statistical treatment of communities. Zoological Magazine (Tokyo), 44, 379-383. |
[27] | Preston FW (1948) The commonness, and rarity, of species. Ecology, 29, 254-283. |
[28] | R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
[29] | Sekhon JS (2008) Multivariate and propensity score matching software with automated balance optimization: the matching package for R. Journal of Statistical Software, 42, 1-52. |
[30] | Siepielski AM, Hung KL, Bein Eben EB, McPeek MA (2010) Experimental evidence for neutral community dynamics governing an insect assemblage. Ecology, 91, 847-857. |
[31] | Song YC (1988) The essential characteristics and main types of the broad-leaved evergreen forest in China. Phytocoenologia, 16, 105-123. |
[32] | Song YC, Wang XR (1995) Vegetation and Flora of Tiantong National Forest Park, Zheijiang Province, China. Shanghai Sciencific and Technological Literature Press, Shanghai. (in Chinese) |
[宋永昌, 王祥荣 (1995) 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海.] | |
[33] | Song YC, Yan ER, Song K (2015) Synthetic comparison of eight dynamics plots in evergreen broadleaf forest, China. Biodiversity Science, 23, 139-148. (in Chinese with English abstract) |
[宋永昌, 阎恩荣, 宋坤 (2015) 中国常绿阔叶林8大动态监测样地植被的综合比较. 生物多样性, 23, 139-148.] | |
[34] | Ulrich W, Ollik M, Ugland KI (2010) A meta-analysis of species-abundance distributions. Oikos, 119, 1149-1155. |
[35] | Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037. |
[36] | Wang XH, Kent M, Fang XF (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. Forest Ecology and Management, 245, 76-87. |
[37] | White EP, Thibault KM, Xiao X (2012) Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecology, 93, 1772-1778. |
[38] | Whittaker RH (1965) Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science, 147, 250-260. |
[39] | Xie YB, Ma ZP, Yang QS, Fang XF, Zhang ZG, Yan ER, Wang XH (2012) Coexistence mechanisms of evergreen and deciduous trees based on topographic factors in Tiantong region, Zhejiang Province, eastern China. Biodiversity Science, 20, 159-167. (in Chinese with English abstract) |
[谢玉彬, 马遵平, 杨庆松, 方晓峰, 张志国, 阎恩荣, 王希华 (2012) 基于地形因子的天童地区常绿树种和落叶树种共存机制研究. 生物多样性, 20, 159-167.] | |
[40] | Yan Y, Zhang CY, Zhao XH (2012) Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China. Chinese Journal of Plant Ecology, 36, 923-934. (in Chinese with English abstract) |
[闫琰, 张春雨, 赵秀海 (2012) 长白山不同演替阶段针阔混交林群落物种多度分布格局. 植物生态学报, 36, 923-934.] | |
[41] | Yang QS, Ma ZP, Xie YB, Zhang ZG, Wang ZH, Liu HM, Li P, Zhang N, Wang DL, Yang HB, Fang XF, Yan ER, Wang XH (2011) Community structure and species composition of an evergreen broad-leaved forest in Tiantong’s 20 ha dynamic plot, Zhejiang Province, eastern China. Biodiversity Science, 19, 215-223. (in Chinese with English abstract) |
[杨庆松, 马遵平, 谢玉彬, 张志国, 王樟华, 刘何铭, 李萍, 张娜, 王达力, 杨海波, 方晓峰, 阎恩荣, 王希华 (2011) 浙江天童20 ha常绿阔叶林动态监测样地的群落特征. 生物多样性, 19, 215-223.] | |
[42] | Zhang S, Lin F, Yuan ZQ, Kuang X, Jia SH, Wang YY, Suo YY, Fang S, Wang XG, Ye J, Hao ZQ (2015) Herb layer species abundance distribution patterns in different seasons in an old-growth temperate forest in Changbai Mountain, China. Biodiversity Science, 23, 641-648. (in Chinese with English abstract) |
[张姗, 蔺菲, 原作强, 匡旭, 贾仕宏, 王芸芸, 索炎炎, 房帅, 王绪高, 叶吉, 郝占庆 (2015) 长白山阔叶红松林草本层物种多度分布格局及其季节动态. 生物多样性, 23, 641-648.] |
[1] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[2] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[3] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[4] | 王然, 乔慧捷. 生态位模型在流行病学中的应用[J]. 生物多样性, 2020, 28(5): 579-586. |
[5] | 刘旻霞, 李全弟, 蒋晓轩, 夏素娟, 南笑宁, 张娅娅, 李博文. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107-116. |
[6] | 范靖宇, 李汉芃, 杨琢, 朱耿平. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布[J]. 生物多样性, 2019, 27(2): 140-148. |
[7] | 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950. |
[8] | 丁晨晨, 胡一鸣, 李春旺, 蒋志刚. 印度野牛在中国的分布及其栖息地适宜性分析[J]. 生物多样性, 2018, 26(9): 951-961. |
[9] | 周中一, 刘冉, 时书纳, 苏艳军, 李文楷, 郭庆华. 基于激光雷达数据的物种分布模拟: 以美国加州内华达山脉南部区域食鱼貂分布模拟为例[J]. 生物多样性, 2018, 26(8): 878-891. |
[10] | 叶俊伟, 袁永革, 蔡荔, 王晓娟. 中国东北温带针阔混交林植物物种的谱系地理研究进展[J]. 生物多样性, 2017, 25(12): 1339-1349. |
[11] | 朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189-1196. |
[12] | 崔相艳, 王文娟, 杨小强, 李述, 秦声远, 戎俊. 基于生态位模型预测野生油茶的潜在分布[J]. 生物多样性, 2016, 24(10): 1117-1128. |
[13] | 张姗, 蔺菲, 原作强, 匡旭, 贾仕宏, 王芸芸, 索炎炎, 房帅, 王绪高, 叶吉, 郝占庆. 长白山阔叶红松林草本层物种多度分布格局及其季节动态[J]. 生物多样性, 2015, 23(5): 641-648. |
[14] | 乔慧捷, 林聪田, 王江宁, 纪力强. 流程化的生态建模方法与科学工作流系统[J]. 生物多样性, 2014, 22(3): 277-284. |
[15] | 朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种 的潜在分布[J]. 生物多样性, 2014, 22(2): 223-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn