生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 630-640. DOI: 10.17520/biods.2015031 cstr: 32101.14.biods.2015031
所属专题: 森林动态监测样地专题
收稿日期:
2015-02-04
接受日期:
2015-05-28
出版日期:
2015-09-20
发布日期:
2015-10-12
通讯作者:
杜晓军
基金资助:
Manyu Yan1,2, Xiaojun Du2,*(), Aihua Zhao2, Mingchun Peng1
Received:
2015-02-04
Accepted:
2015-05-28
Online:
2015-09-20
Published:
2015-10-12
Contact:
Du Xiaojun
摘要:
单物种-面积关系(ISAR)方法可判定单个物种在不同空间尺度下对邻域生物多样性的影响作用是促进、抑制或中性。尽管已有研究尝试分析了不同径级大小个体对邻域植物多样性的影响, 但这方面仍缺乏较系统的研究, 对不同径级植株在维持森林群落植物多样性方面的作用差异仍不清楚。本研究以河南宝天曼国家级自然保护区1 ha落叶阔叶林固定样地为例, 通过对全部树(包括大树和小树)分别对全部树/大树/小树, 大树分别对全部树/大树/小树, 小树分别对全部树/大树/小树9种类型的ISAR进行比较分析, 拟验证如下假设: (1)大树相比小树来说对邻域植物多样性的影响更大, (2)同一物种或同一径级个体对邻域小树比对邻域大树的影响要强, (3)宝天曼落叶阔叶林木本植物中中性物种占主体。结果显示不同大小的树木个体对邻域植物多样性的影响作用也因空间尺度、邻域植物个体大小而有所差别: 支持同一物种或同一径级个体对邻域小树比对邻域大树的影响要强的假设, 没有检测到大树比小树对邻域植物多样性更大的影响作用; 中性物种在所研究森林群落中1-10 m尺度上均占绝对优势, 促进种的数量在全部树对全部树, 全部树对小树, 小树对全部树以及小树对小树情况下随着尺度的增加呈先升高后下降的趋势, 抑制种在少数小尺度下被少量检测到。本研究结果有助于我们更好地认识和理解森林群落中物种作用及群落维持机制, 但该结果还需在更大尺度样地以及其他类型的森林中进行检验。
闫满玉, 杜晓军, 赵爱花, 彭明春 (2015) 河南宝天曼落叶阔叶林木本植物单物种-面积关系. 生物多样性, 23, 630-640. DOI: 10.17520/biods.2015031.
Manyu Yan, Xiaojun Du, Aihua Zhao, Mingchun Peng (2015) Individual woody species-area relationship in a deciduous broad-leaved forest in Baotianman, Henan Province. Biodiversity Science, 23, 630-640. DOI: 10.17520/biods.2015031.
图1 宝天曼1 ha森林动态监测样地内木本植物径级结构(上)及个体空间分布(下) (所有个体、个体数≥ 10的大树、个体数≥ 30的小树)
Fig. 1 DBH classes distribution (top) and spatial distribution (down) of woody species for all individual, adult tree (individuals ≥ 10, DBH ≥ 10 cm), young tree (individuals ≥ 30, DBH < 10 cm) in the 1 ha Baotianman Forest Dynamics Plot
图2 九种类型((a)全部树对全部树、(b)全部树对大树、(c)全部树对小树、(d)大树对全部树、(e)大树对大树、(f)大树对小树、(g)小树对全部树、(h)小树对大树和(i)小树对小树)的单物种面积关系曲线(ISAR)。黑线代表例子物种杈叶枫。
Fig. 2 The individual species-area relationship (ISAR) of nine types ((a) all to all, (b) all to adult, (c) all to young, (d) adult to all, (e) adult to adult, (f) adult to young, (g) young to all, (h) young to adult, and (i) young to young). Black line: an example species of Acer ceriferum.
图3 九种类型((a)全部树对全部树、(b)全部树对大树、(c)全部树对小树、(d)大树对全部树、(e)大树对大树、(f)大树对小树、(g)小树对全部树、(h)小树对大树和(i)小树对小树)的单物种面积关系在不同尺度下多样性促进种、中性种或抑制种的数量
Fig. 3 Species number of significant diversity accumulator, neutral and repeller at different spatial scales from individual species-area relationships of nine types ((a) all to all, (b) all to adult, (c) all to young, (d) adult to all, (e) adult to adult, (f) adult to young, (g) young to all, (h) young to adult, and (i) young to young).
图4 不同尺度下9种类型(全部树对全部树、全部树对大树、全部树对小树、大树对全部树、大树对大树、大树对小树、小树对全部树、小树对大树和小树对小树)的单物种面积关系(ISAR)比例值(A) (平均值±标准误)及其范围(最大值和最小值之差) (B)
Fig. 4 Values of ratio for individual species-area relationship (ISAR) of nine types (all to all, all to adult, all to young, adult to all, adult to adult, adult to young, young to all, young to adult, and young to young) (A) (mean ± SE) and their ranges (the difference between maximum and minimum of ISAR ratio) (B) at different spatial scales.
类型 Type | 尺度 Scales (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
全部树对全部树 All to all | 0.020ab | 0.047a | 0.071ab | 0.093a | 0.120b | 0.137b | 0.157b | 0.175b | 0.191b | 0.206b |
全部树对大树 All to adult | 0.003e | 0.010e | 0.021e | 0.033c | 0.045d | 0.057e | 0.069e | 0.082d | 0.095d | 0.108d |
全部树对小树 All to young | 0.006de | 0.022d | 0.043cd | 0.065b | 0.086c | 0.106c | 0.126c | 0.144c | 0.162c | 0.180c |
大树对全部树 Adult to all | 0.006de | 0.024cd | 0.055bc | 0.089a | 0.124ab | 0.159ab | 0.195a | 0.228a | 0.264a | 0.296a |
大树对大树 Adult to adult | 0.006de | 0.018de | 0.030de | 0.044bc | 0.063cd | 0.080de | 0.100d | 0.123c | 0.143c | 0.160c |
大树对小树 Adult to young | 0.015bc | 0.045ab | 0.072ab | 0.097a | 0.136ab | 0.162a | 0.199a | 0.231a | 0.264a | 0.298a |
小树对全部树 Young to all | 0.022a | 0.033bc | 0.064ab | 0.098a | 0.133ab | 0.166a | 0.199a | 0.231a | 0.263a | 0.295a |
小树对大树 Young to adult | 0.009cd | 0.023cd | 0.038d | 0.051b | 0.072c | 0.087d | 0.106d | 0.127c | 0.164c | 0.167c |
小树对小树 Young to young | 0.022a | 0.050a | 0.078a | 0.106a | 0.141a | 0.168a | 0.200a | 0.235a | 0.264a | 0.295a |
表1 不同空间尺度下9种类型的单物种面积关系(ISAR)比例值的均值比较(Scheffe方法)。相同字母表示差异不显著, 不同字母表示差异显著(P < 0.05)。
Table 1 Comparisons on the mean values of individual species-area relationship (ISAR) ratios of 9 types at different spatial scales (Scheffe method). The same letters mean no significant difference, different letters mean significant difference (P < 0.05).
类型 Type | 尺度 Scales (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
全部树对全部树 All to all | 0.020ab | 0.047a | 0.071ab | 0.093a | 0.120b | 0.137b | 0.157b | 0.175b | 0.191b | 0.206b |
全部树对大树 All to adult | 0.003e | 0.010e | 0.021e | 0.033c | 0.045d | 0.057e | 0.069e | 0.082d | 0.095d | 0.108d |
全部树对小树 All to young | 0.006de | 0.022d | 0.043cd | 0.065b | 0.086c | 0.106c | 0.126c | 0.144c | 0.162c | 0.180c |
大树对全部树 Adult to all | 0.006de | 0.024cd | 0.055bc | 0.089a | 0.124ab | 0.159ab | 0.195a | 0.228a | 0.264a | 0.296a |
大树对大树 Adult to adult | 0.006de | 0.018de | 0.030de | 0.044bc | 0.063cd | 0.080de | 0.100d | 0.123c | 0.143c | 0.160c |
大树对小树 Adult to young | 0.015bc | 0.045ab | 0.072ab | 0.097a | 0.136ab | 0.162a | 0.199a | 0.231a | 0.264a | 0.298a |
小树对全部树 Young to all | 0.022a | 0.033bc | 0.064ab | 0.098a | 0.133ab | 0.166a | 0.199a | 0.231a | 0.263a | 0.295a |
小树对大树 Young to adult | 0.009cd | 0.023cd | 0.038d | 0.051b | 0.072c | 0.087d | 0.106d | 0.127c | 0.164c | 0.167c |
小树对小树 Young to young | 0.022a | 0.050a | 0.078a | 0.106a | 0.141a | 0.168a | 0.200a | 0.235a | 0.264a | 0.295a |
[1] | Chesson P (2000) General theory of competitive coexistence in spatially varying environments.Theortical Population Biology, 58, 211-237. |
[2] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardlised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
[3] | Condit R, Ashton P, Bunyavejchewin S, Dattaraja HS, Davies S (2006) The importance of demographic niches to tree diversity.Science, 313, 98-101. |
[4] | Condit R (1998) Tropical Forest Census Plots: Methords and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, New York. |
[5] | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boser PJD, Gradwell GR), pp. 298-312. Center for Agricultural Publishing and Documentation, Wageningen. |
[6] | Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. Hodder Arnold, London. |
[7] | Fan CY (范春雨), Yuan ZL (元正龙), Zhao XH (赵秀海) (2014) Scale dependence of species diversity pattern in a near-mature forest in Jiaohe of Jinlin Province.Journal of Beijing Forestry University(北京林业大学学报) 36(6), 73-79. (in Chinese with English abstract) |
[8] | Gleason HA (1922) On the relation between species and area.Ecology, 3, 158-162. |
[9] | Gong GQ (宫贵权), Huang ZL (黄忠良), Huang JX (黄建雄), Ye WH (叶万辉), Cao HL (曹洪麟), Lian JY (练琚愉), Lin GJ (林国俊) (2011) How individual species structure the community in Dinghushan 20 ha forest plot? Ecology and Environmental Science(生态环境学报), 22, 574-582. (in Chinese with English abstract) |
[10] | Hara T (1988) Dynamics of size structure in plant populations.Trends in Ecology and Evolution, 3, 129-133. |
[11] | He FL, Legendre P (2002) Species diveristy patterns derived from species-area models.Ecology, 83, 1185-1198. |
[12] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[13] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term of individual trees in a neotropical forest.Ecological Research, 16, 859-875. |
[14] | Hubbell SP, He F, Condit R, Borda-de-Agua L, Kellner J, ter Steege H (2008) How many tree species are there in the Amazon and how many of them will go extinct?Proceedings of the National Academy of Sciences, USA, 105, 11498-11504. |
[15] | Janzen DH (1970) Herbivores and the number of tree species in tropical forests.The American Naturalist, 104, 501-528. |
[16] | Lieberman M, Lieberman D (2007) Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity.Oikos, 116, 377-386. |
[17] | Lin WX (林武星), Hong W (洪伟), Zheng YS (郑郁善), Ye GF (叶功富) (2005) Research advance in allelopathy of forest plants.Chinese Journal of Eco-Agriculture(中国生态农业学报), 13(2), 43-46. (in Chinese with English abstract) |
[18] | Loosmore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics.Ecology, 87, 1925-1931. |
[19] | Luu TC, Binkley D, Stape JL (2013) Neighborhood uniformity increases growth of individual Eucalyptus trees.Forest Ecology and Management, 289, 90-97. |
[20] | Matthew AL (1995) The niche concept revisited: mechanistic model and community context.Ecology, 76, 1371-1382. |
[21] | McPherson JK, Thompson GL (1972) Competitive and allelopathic suppression of understory by Oklahoma oak forests.Bulletin of the Torrey Botanical Club, 99, 293-300. |
[22] | Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology.Plant Ecology, 187, 59-82. |
[23] | Plotkin JB, Potts MD, Yu DW, Bunyavejchewin S, Condit R, Foster R, Hubbell S, LaFrankie J, Manokaran N, Lee HS, Sukumar R, Nowak MA, Ashton PS (2000) Predicting species diversity in tropical forests.Proceedings of the National Academy of Sciences, USA, 97, 10850-10854. |
[24] | Rayburn AP, Wiegand T (2012) Individual species-area relationships, spatial patterns of species diversity in a Great Basin, semi-arid shrubland.Ecography, 35, 341-347. |
[25] | Ricklefs RE (1987) Community diversity relative roles of local and regional process.Science, 235, 167-171. |
[26] | Shi ZM (史作民), Liu SR (刘世荣), Wang ZY (王正用) (1996) The characteristics of flora of seed plants in Baotianman.Acta Botanica Boreali-Occidentalia Sinica(西北植物学报), 16, 329-335. (in Chinese with English abstract) |
[27] | Song CS (宋朝枢) (1994) Scientific Investigation in the Bao- tianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[28] | Steel RGD, Toeeir JH, Dickey DA (1996)Principles and Procedures of Statistics: A Biometrical Approach, 3rd edn. McGraw-Hill Companies, New York. |
[29] | Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a bornean rain forest.Ecology, 86, 3048-3062. |
[30] | Tang M (唐明), Chen H (陈辉), Zhang BY (张博勇) (1993) Study on the VA mycorrhizae of Acer truncatun Bunge.Journal of Northwest Forestry College(西北林学院学报), 8(3), 18-21. (in Chinese with English abstract) |
[31] | Volkov I, Banavar JR, He F, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests.Nature, 438, 658-661. |
[32] | Wang T (王婷), Ren SY (任思远), Yuan ZL (袁志良), Zhu Y (祝燕), Pan N (潘娜), Li LX (李鹿鑫), Ye YZ (叶永忠) (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China.Biodiversity Science(生物多样性), 22, 449-457. (in Chinese with English abstract) |
[33] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogeneies and community ecology.Annual Review of Ecology and Systematics, 33, 475-505. |
[34] | Weiner J (1990) Asymmetric competition in plant populations.Trends in Ecology and Evolution, 5, 360-364. |
[35] | Wei YB (魏彦波), Cheng YX (程艳霞), Li JG (李金功), Wang GC (王贵春) (2014) Plant diversity accumulators govern local spatial diversity.Journal of Beijing Forestry University(北京林业大学学报), 36(6), 66-72. (in Chinese with English abstract) |
[36] | Wiegand T, Gunatilleke CVS, Gunatilleke IAUN, Huth A (2007) How individual species structure diversity in tropical forests. Proceedings of the National Academy of Sciences, USA, 104, 19029-19033. |
[37] | Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229. |
[38] | Yang J, Swenson NG, Cao M, Chuyong GB, Ewango CEN, Howe R, Kenfack D, Thomas D, Wolf A, Lin LX (2013) A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.PLoS ONE, 8, e63192. |
[39] | Zhang CY, Jin WB, Gao LS, Zhao XH (2014) Scale dependent structuring of spatial diversity in two temperate forest communities. Forest Ecology and Management, 316, 110-116. |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[10] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[11] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[12] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[13] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[14] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[15] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn