生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 630-640. DOI: 10.17520/biods.2015031
所属专题: 森林动态监测样地专题
收稿日期:
2015-02-04
接受日期:
2015-05-28
出版日期:
2015-09-20
发布日期:
2015-10-12
通讯作者:
杜晓军
基金资助:
Manyu Yan1,2, Xiaojun Du2,*(), Aihua Zhao2, Mingchun Peng1
Received:
2015-02-04
Accepted:
2015-05-28
Online:
2015-09-20
Published:
2015-10-12
Contact:
Du Xiaojun
摘要:
单物种-面积关系(ISAR)方法可判定单个物种在不同空间尺度下对邻域生物多样性的影响作用是促进、抑制或中性。尽管已有研究尝试分析了不同径级大小个体对邻域植物多样性的影响, 但这方面仍缺乏较系统的研究, 对不同径级植株在维持森林群落植物多样性方面的作用差异仍不清楚。本研究以河南宝天曼国家级自然保护区1 ha落叶阔叶林固定样地为例, 通过对全部树(包括大树和小树)分别对全部树/大树/小树, 大树分别对全部树/大树/小树, 小树分别对全部树/大树/小树9种类型的ISAR进行比较分析, 拟验证如下假设: (1)大树相比小树来说对邻域植物多样性的影响更大, (2)同一物种或同一径级个体对邻域小树比对邻域大树的影响要强, (3)宝天曼落叶阔叶林木本植物中中性物种占主体。结果显示不同大小的树木个体对邻域植物多样性的影响作用也因空间尺度、邻域植物个体大小而有所差别: 支持同一物种或同一径级个体对邻域小树比对邻域大树的影响要强的假设, 没有检测到大树比小树对邻域植物多样性更大的影响作用; 中性物种在所研究森林群落中1-10 m尺度上均占绝对优势, 促进种的数量在全部树对全部树, 全部树对小树, 小树对全部树以及小树对小树情况下随着尺度的增加呈先升高后下降的趋势, 抑制种在少数小尺度下被少量检测到。本研究结果有助于我们更好地认识和理解森林群落中物种作用及群落维持机制, 但该结果还需在更大尺度样地以及其他类型的森林中进行检验。
闫满玉, 杜晓军, 赵爱花, 彭明春 (2015) 河南宝天曼落叶阔叶林木本植物单物种-面积关系. 生物多样性, 23, 630-640. DOI: 10.17520/biods.2015031.
Manyu Yan, Xiaojun Du, Aihua Zhao, Mingchun Peng (2015) Individual woody species-area relationship in a deciduous broad-leaved forest in Baotianman, Henan Province. Biodiversity Science, 23, 630-640. DOI: 10.17520/biods.2015031.
图1 宝天曼1 ha森林动态监测样地内木本植物径级结构(上)及个体空间分布(下) (所有个体、个体数≥ 10的大树、个体数≥ 30的小树)
Fig. 1 DBH classes distribution (top) and spatial distribution (down) of woody species for all individual, adult tree (individuals ≥ 10, DBH ≥ 10 cm), young tree (individuals ≥ 30, DBH < 10 cm) in the 1 ha Baotianman Forest Dynamics Plot
图2 九种类型((a)全部树对全部树、(b)全部树对大树、(c)全部树对小树、(d)大树对全部树、(e)大树对大树、(f)大树对小树、(g)小树对全部树、(h)小树对大树和(i)小树对小树)的单物种面积关系曲线(ISAR)。黑线代表例子物种杈叶枫。
Fig. 2 The individual species-area relationship (ISAR) of nine types ((a) all to all, (b) all to adult, (c) all to young, (d) adult to all, (e) adult to adult, (f) adult to young, (g) young to all, (h) young to adult, and (i) young to young). Black line: an example species of Acer ceriferum.
图3 九种类型((a)全部树对全部树、(b)全部树对大树、(c)全部树对小树、(d)大树对全部树、(e)大树对大树、(f)大树对小树、(g)小树对全部树、(h)小树对大树和(i)小树对小树)的单物种面积关系在不同尺度下多样性促进种、中性种或抑制种的数量
Fig. 3 Species number of significant diversity accumulator, neutral and repeller at different spatial scales from individual species-area relationships of nine types ((a) all to all, (b) all to adult, (c) all to young, (d) adult to all, (e) adult to adult, (f) adult to young, (g) young to all, (h) young to adult, and (i) young to young).
图4 不同尺度下9种类型(全部树对全部树、全部树对大树、全部树对小树、大树对全部树、大树对大树、大树对小树、小树对全部树、小树对大树和小树对小树)的单物种面积关系(ISAR)比例值(A) (平均值±标准误)及其范围(最大值和最小值之差) (B)
Fig. 4 Values of ratio for individual species-area relationship (ISAR) of nine types (all to all, all to adult, all to young, adult to all, adult to adult, adult to young, young to all, young to adult, and young to young) (A) (mean ± SE) and their ranges (the difference between maximum and minimum of ISAR ratio) (B) at different spatial scales.
类型 Type | 尺度 Scales (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
全部树对全部树 All to all | 0.020ab | 0.047a | 0.071ab | 0.093a | 0.120b | 0.137b | 0.157b | 0.175b | 0.191b | 0.206b |
全部树对大树 All to adult | 0.003e | 0.010e | 0.021e | 0.033c | 0.045d | 0.057e | 0.069e | 0.082d | 0.095d | 0.108d |
全部树对小树 All to young | 0.006de | 0.022d | 0.043cd | 0.065b | 0.086c | 0.106c | 0.126c | 0.144c | 0.162c | 0.180c |
大树对全部树 Adult to all | 0.006de | 0.024cd | 0.055bc | 0.089a | 0.124ab | 0.159ab | 0.195a | 0.228a | 0.264a | 0.296a |
大树对大树 Adult to adult | 0.006de | 0.018de | 0.030de | 0.044bc | 0.063cd | 0.080de | 0.100d | 0.123c | 0.143c | 0.160c |
大树对小树 Adult to young | 0.015bc | 0.045ab | 0.072ab | 0.097a | 0.136ab | 0.162a | 0.199a | 0.231a | 0.264a | 0.298a |
小树对全部树 Young to all | 0.022a | 0.033bc | 0.064ab | 0.098a | 0.133ab | 0.166a | 0.199a | 0.231a | 0.263a | 0.295a |
小树对大树 Young to adult | 0.009cd | 0.023cd | 0.038d | 0.051b | 0.072c | 0.087d | 0.106d | 0.127c | 0.164c | 0.167c |
小树对小树 Young to young | 0.022a | 0.050a | 0.078a | 0.106a | 0.141a | 0.168a | 0.200a | 0.235a | 0.264a | 0.295a |
表1 不同空间尺度下9种类型的单物种面积关系(ISAR)比例值的均值比较(Scheffe方法)。相同字母表示差异不显著, 不同字母表示差异显著(P < 0.05)。
Table 1 Comparisons on the mean values of individual species-area relationship (ISAR) ratios of 9 types at different spatial scales (Scheffe method). The same letters mean no significant difference, different letters mean significant difference (P < 0.05).
类型 Type | 尺度 Scales (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
全部树对全部树 All to all | 0.020ab | 0.047a | 0.071ab | 0.093a | 0.120b | 0.137b | 0.157b | 0.175b | 0.191b | 0.206b |
全部树对大树 All to adult | 0.003e | 0.010e | 0.021e | 0.033c | 0.045d | 0.057e | 0.069e | 0.082d | 0.095d | 0.108d |
全部树对小树 All to young | 0.006de | 0.022d | 0.043cd | 0.065b | 0.086c | 0.106c | 0.126c | 0.144c | 0.162c | 0.180c |
大树对全部树 Adult to all | 0.006de | 0.024cd | 0.055bc | 0.089a | 0.124ab | 0.159ab | 0.195a | 0.228a | 0.264a | 0.296a |
大树对大树 Adult to adult | 0.006de | 0.018de | 0.030de | 0.044bc | 0.063cd | 0.080de | 0.100d | 0.123c | 0.143c | 0.160c |
大树对小树 Adult to young | 0.015bc | 0.045ab | 0.072ab | 0.097a | 0.136ab | 0.162a | 0.199a | 0.231a | 0.264a | 0.298a |
小树对全部树 Young to all | 0.022a | 0.033bc | 0.064ab | 0.098a | 0.133ab | 0.166a | 0.199a | 0.231a | 0.263a | 0.295a |
小树对大树 Young to adult | 0.009cd | 0.023cd | 0.038d | 0.051b | 0.072c | 0.087d | 0.106d | 0.127c | 0.164c | 0.167c |
小树对小树 Young to young | 0.022a | 0.050a | 0.078a | 0.106a | 0.141a | 0.168a | 0.200a | 0.235a | 0.264a | 0.295a |
[1] | Chesson P (2000) General theory of competitive coexistence in spatially varying environments.Theortical Population Biology, 58, 211-237. |
[2] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardlised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380. |
[3] | Condit R, Ashton P, Bunyavejchewin S, Dattaraja HS, Davies S (2006) The importance of demographic niches to tree diversity.Science, 313, 98-101. |
[4] | Condit R (1998) Tropical Forest Census Plots: Methords and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, New York. |
[5] | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boser PJD, Gradwell GR), pp. 298-312. Center for Agricultural Publishing and Documentation, Wageningen. |
[6] | Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. Hodder Arnold, London. |
[7] | Fan CY (范春雨), Yuan ZL (元正龙), Zhao XH (赵秀海) (2014) Scale dependence of species diversity pattern in a near-mature forest in Jiaohe of Jinlin Province.Journal of Beijing Forestry University(北京林业大学学报) 36(6), 73-79. (in Chinese with English abstract) |
[8] | Gleason HA (1922) On the relation between species and area.Ecology, 3, 158-162. |
[9] | Gong GQ (宫贵权), Huang ZL (黄忠良), Huang JX (黄建雄), Ye WH (叶万辉), Cao HL (曹洪麟), Lian JY (练琚愉), Lin GJ (林国俊) (2011) How individual species structure the community in Dinghushan 20 ha forest plot? Ecology and Environmental Science(生态环境学报), 22, 574-582. (in Chinese with English abstract) |
[10] | Hara T (1988) Dynamics of size structure in plant populations.Trends in Ecology and Evolution, 3, 129-133. |
[11] | He FL, Legendre P (2002) Species diveristy patterns derived from species-area models.Ecology, 83, 1185-1198. |
[12] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[13] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term of individual trees in a neotropical forest.Ecological Research, 16, 859-875. |
[14] | Hubbell SP, He F, Condit R, Borda-de-Agua L, Kellner J, ter Steege H (2008) How many tree species are there in the Amazon and how many of them will go extinct?Proceedings of the National Academy of Sciences, USA, 105, 11498-11504. |
[15] | Janzen DH (1970) Herbivores and the number of tree species in tropical forests.The American Naturalist, 104, 501-528. |
[16] | Lieberman M, Lieberman D (2007) Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity.Oikos, 116, 377-386. |
[17] | Lin WX (林武星), Hong W (洪伟), Zheng YS (郑郁善), Ye GF (叶功富) (2005) Research advance in allelopathy of forest plants.Chinese Journal of Eco-Agriculture(中国生态农业学报), 13(2), 43-46. (in Chinese with English abstract) |
[18] | Loosmore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics.Ecology, 87, 1925-1931. |
[19] | Luu TC, Binkley D, Stape JL (2013) Neighborhood uniformity increases growth of individual Eucalyptus trees.Forest Ecology and Management, 289, 90-97. |
[20] | Matthew AL (1995) The niche concept revisited: mechanistic model and community context.Ecology, 76, 1371-1382. |
[21] | McPherson JK, Thompson GL (1972) Competitive and allelopathic suppression of understory by Oklahoma oak forests.Bulletin of the Torrey Botanical Club, 99, 293-300. |
[22] | Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology.Plant Ecology, 187, 59-82. |
[23] | Plotkin JB, Potts MD, Yu DW, Bunyavejchewin S, Condit R, Foster R, Hubbell S, LaFrankie J, Manokaran N, Lee HS, Sukumar R, Nowak MA, Ashton PS (2000) Predicting species diversity in tropical forests.Proceedings of the National Academy of Sciences, USA, 97, 10850-10854. |
[24] | Rayburn AP, Wiegand T (2012) Individual species-area relationships, spatial patterns of species diversity in a Great Basin, semi-arid shrubland.Ecography, 35, 341-347. |
[25] | Ricklefs RE (1987) Community diversity relative roles of local and regional process.Science, 235, 167-171. |
[26] | Shi ZM (史作民), Liu SR (刘世荣), Wang ZY (王正用) (1996) The characteristics of flora of seed plants in Baotianman.Acta Botanica Boreali-Occidentalia Sinica(西北植物学报), 16, 329-335. (in Chinese with English abstract) |
[27] | Song CS (宋朝枢) (1994) Scientific Investigation in the Bao- tianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[28] | Steel RGD, Toeeir JH, Dickey DA (1996)Principles and Procedures of Statistics: A Biometrical Approach, 3rd edn. McGraw-Hill Companies, New York. |
[29] | Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a bornean rain forest.Ecology, 86, 3048-3062. |
[30] | Tang M (唐明), Chen H (陈辉), Zhang BY (张博勇) (1993) Study on the VA mycorrhizae of Acer truncatun Bunge.Journal of Northwest Forestry College(西北林学院学报), 8(3), 18-21. (in Chinese with English abstract) |
[31] | Volkov I, Banavar JR, He F, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests.Nature, 438, 658-661. |
[32] | Wang T (王婷), Ren SY (任思远), Yuan ZL (袁志良), Zhu Y (祝燕), Pan N (潘娜), Li LX (李鹿鑫), Ye YZ (叶永忠) (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China.Biodiversity Science(生物多样性), 22, 449-457. (in Chinese with English abstract) |
[33] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogeneies and community ecology.Annual Review of Ecology and Systematics, 33, 475-505. |
[34] | Weiner J (1990) Asymmetric competition in plant populations.Trends in Ecology and Evolution, 5, 360-364. |
[35] | Wei YB (魏彦波), Cheng YX (程艳霞), Li JG (李金功), Wang GC (王贵春) (2014) Plant diversity accumulators govern local spatial diversity.Journal of Beijing Forestry University(北京林业大学学报), 36(6), 66-72. (in Chinese with English abstract) |
[36] | Wiegand T, Gunatilleke CVS, Gunatilleke IAUN, Huth A (2007) How individual species structure diversity in tropical forests. Proceedings of the National Academy of Sciences, USA, 104, 19029-19033. |
[37] | Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229. |
[38] | Yang J, Swenson NG, Cao M, Chuyong GB, Ewango CEN, Howe R, Kenfack D, Thomas D, Wolf A, Lin LX (2013) A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.PLoS ONE, 8, e63192. |
[39] | Zhang CY, Jin WB, Gao LS, Zhao XH (2014) Scale dependent structuring of spatial diversity in two temperate forest communities. Forest Ecology and Management, 316, 110-116. |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn