Biodiversity Science ›› 2019, Vol. 27 ›› Issue (2): 200-210.doi: 10.17520/biods.2019012

• Original Papers • Previous Article     Next Article

Effect of seasonal hypoxia on macrobenthic communities in the Muping Marine Ranch, Yantai, China

Yang Lufei1, 2, Chen Linlin2, Li Xiaojing2, Zhou Zhengquan2, Liu Bo1, 2, Song Bo1, 2, Li Bingjun1, *(), Li Baoquan2, *()   

  1. 1 School of Ocean, Yantai University, Yantai, Shandong 264003
    2 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003
  • Received:2019-01-16 Accepted:2019-02-26 Online:2019-04-16
  • Li Bingjun,Li Baoquan E-mail:Li6234307@163.com;bqli@yic.ac.cn

Hypoxia is a common phenomenon in the world’s oceans, especially in the shallow waters of coastal zones. Rates of hypoxia are increasing due to global climatic changes and anthropogenic activities. Hypoxia can cause mass mortality of marine animals and can have severe negative impacts on marine ecosystems. To better understand the effects of hypoxia on macrobenthic communities, a survey was carried out in the Muping Marine Ranch (Yantai) during June, August and September of 2016. Results showed that seasonal hypoxia led to changes in benthic community structure, especially in terms of species composition and dominant species. The dominant species were Polychaeta Lumbrinereis latreilli, Sternaspis scutata and Mollusca Endopleura lubrica in summer. The opportunistic species Lumbrinereis latreilli increased, whereas, sensitive species such as Leptomya minuta, Glycera chirori, Upogebia major, Pontocrates altamarimus, Eriopisella sechellensis decreased during the hypoxic period of August. Hypoxia also reduced biodiversity indices. The effect of hypoxia on abundance and biomass were not significant, mainly because of the increase in the opportunistic Lumbrinereis latreilli, which counteracted the decline in abundance and biomass of other species. Individual physiological tolerance to hypoxia was different among species. Lumbrinereis latreilli showed higher tolerance to hypoxia in dissolved oxygen (DO) = 1.0 mg/L compared to other species. Some sensitive species, such as Leptomya minuta, Upogebia major, Pontocrates altamarimus and Eriopisella sechellensis showed lower tolerance when DO < 2.5 mg/L. When DO increased to 2.5 mg/L, the macrobenthic community start to recover gradually. The recovery extent and time needed were closely related to the degree of seasonal hypoxia.

Key words: hypoxia, community structure, community recovery, sensitive species, opportunistic species

Fig. 1

Sampling stations of macrobenthos in the Muping Marine Ranch (Yantai) during summer 2016. ★ Hypoxic zone; ■ Marginal area of hypoxic zone; ▲ Aquaculture zone; ● Offshore zone."

Table 1

Dissolved oxygen (mg/L) of bottom water in the Muping Marine Ranch (Yantai) during summer 2016"

站位
Station
6月
June
8月
August
9月
September
站位
Station
6月
June
8月
August
9月
September
站位
Station
6月
June
8月
August
9月
September
2 5.20 4.25 4.24 17 6.68 2.54 3.78 S1 7.77 2.73 3.62
3 6.44 2.00 4.23 18 6.96 2.96 4.04 S4 7.13 3.39 3.53
5 7.43 3.30 4.38 19 6.96 3.23 4.74 S6 7.08 3.26 -
7 4.43 1.02 4.15 21 7.26 3.59 7.79 S8 7.71 3.56 -
9 6.36 2.50 8.28 23 7.11 2.71 7.33 S10 7.05 3.18 -
11 6.41 5.99 4.22 29 7.45 3.04 4.42 S11 7.15 3.74 3.65
13 4.93 2.03 3.94 C3 5.93 3.54 4.51 S12 6.72 2.63 5.10
14 5.28 2.25 4.19 Y3 5.68 3.84 4.04 平均值 Average 6.56 3.25 4.78
16 7.53 8.02 6.97 Y5 5.29 1.95 3.93

Table 2

Composition of macrobenthic community in hypoxic zone in the Muping Marine Ranch (Yantai) during summer 2016"

物种数 Species number (%)
6月 June 8月 August 9月 September
多毛类 Polychaeta 23(67.6) 21(63.6) 25(62.5)
甲壳类 Crustacea 5(14.7) 4(12.1) 6(15)
软体动物 Mollusca 4(11.8) 6(18.2) 6(15)
棘皮动物 Echinodermata 1(2.9) - 2(5)
其他 Others 1(2.9) 2(6.1) 1(2.5)
总计 Total 34(100) 33(100) 40(100)

Table 3

Composition of macrobenthic community in different zones in the Muping Marine Ranch (Yantai) during August 2016"

物种数 Species number (%)
低氧区
Hypoxic
zone
低氧边缘区
Marginal area of hypoxic zone
养殖区
Aquaculture zone
外海区
Offshore zone
多毛类 Polychaeta 21(63.6) 20(52.6) 31(55.4) 18(50)
甲壳类 Crustacea 4(12.1) 7(18.4) 11(19.6) 8(22.2)
软体动物 Mollusca 6(18.2) 8(21.1) 10(17.9) 8(22.2)
棘皮动物 Echinodermata - 2(5.3) 3(5.4) 1(2.8)
其他 Others 2(6.1) 1(2.6) 1(1.8) 1(2.8)
总计 Total 33(100) 38(100) 56(100) 36(100)

Table 4

The macrobenthic abundance and biomass in different zones in the Muping Marine Ranch (Yantai) during summer 2016"

月份
Month
低氧区
Hypoxic zone
低氧边缘区
Marginal area of hypoxic zone
养殖区
Aquaculture zone
外海区
Offshore zone
总计
Total
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
6 2,183.33 5.84 2,573.33 10.31 853.33 9.69 855.83 5.71 1,500.3 7.41
8 2,102.22 12.16 1,645.33 5.01 496.67 5.02 444.17 2.92 1,094.9 6.06
9 1,216.67 7.96 1,972 4.79 595 2.16 533.33 13.62 999.97 7.75

Table 5

Composition of macrobenthic abundance and biomass in different zones in the Muping Marine Ranch (Yantai) during August 2016"

低氧区
Hypoxic zone
低氧边缘区
Marginal area of hypoxic zone
养殖区
Aquaculture zone
外海区
Offshore zone
丰度
Abundance
(ind./m2)
生物量
Biomass (g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
多毛类 Polychaeta 1,933.33 6.96 1,048 3.45 397.78 3.66 270.83 1.56
甲壳类 Crustacea 16.67 2.31 44 0.33 24.44 0.61 17.50 0.085
软体动物 Mollusca 147.78 0.55 542.67 1.02 68.89 0.27 153.33 1.20
棘皮动物 Echinodermata - - 5.33 0.06 4.44 0.39 1.67 0.049
其他 Others 4.45 2.34 5.33 0.15 1.11 0.09 0.83 0.018

Fig. 2

Spatial distribution of macrobenthic abundance (a, ind./m2) and biomass (b, g/m2) in the Muping Marine Ranch (Yantai) during August 2016"

Fig. 3

Diversity indices of macrobenthic community in different zones in the Muping Marine Ranch (Yantai) during August 2016"

Fig. 4

Analysis of NMDS on macrobenthos in hypoxic zone in the Muping Marine Ranch (Yantai) during summer 2016. “6-3” represents for the third sampling station in June, the others are likewise."

Fig. 5

The macrobenthic abundance in hypoxic zone in the Muping Marine Ranch (Yantai) during summer 2016. Abundance value increases linearly with the circle diameter. P, Polychaeta; C, Crustacea; M, Mollusca; E, Echinodermata; O, Others."

[1] Baustian MM, Rabalais NN ( 2009) Seasonal composition of benthic macroinfauna exposed to hypoxia in the northern gulf of Mexico. Estuaries and Coasts, 32, 975-983.
doi: 10.1007/s12237-009-9187-3
[2] Briggs KB, Cartwright G, Friedrichs CT, Shivarudruppa S ( 2015) Biogenic effects on cohesive sediment erodibility resulting from recurring seasonal hypoxia on the Louisiana shelf. Continental Shelf Research, 93, 17-26.
doi: 10.1016/j.csr.2014.11.005
[3] Chen YQ, Xu ZL, Wang YL ( 1995) An ecological study on zooplankton in plume front zone of Changjiang (Yangtze) River estuarine area. I. Biomass distribution of dominant species. Journal of Fishery Sciences of China, 2, 49-58. (in Chinese with English abstract)
[ 陈亚瞿, 徐兆礼, 王云龙 ( 1995) 长江口河口锋区浮游动物生态研究. I. 生物量及优势种的平面分布. 中国水产科学, 2, 49-58.]
[4] Chi LB, Song XX, Yuan YQ, Wang WT, Zhou P, Fan X, Cao XH, Yu ZM ( 2017) Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China. Marine Pollution Bulletin, 125, 440-450.
doi: 10.1016/j.marpolbul.2017.09.063 pmid: 29029983
[5] Chu JWF, Tunnicliffe V ( 2015) Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia. Global Change Biology, 21, 2989-3004.
doi: 10.1111/gcb.12898 pmid: 25689932
[6] Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F ( 2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science & Technology, 36, 5315-5320.
doi: 10.1021/es025763w pmid: 12521155
[7] Dauer DM ( 1993) Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin, 26, 249-257.
doi: 10.1016/0025-326X(93)90063-P
[8] Diaz RJ ( 2001) Overview of hypoxia around the world. Journal of Environment Quality, 30, 275-281.
doi: 10.2134/jeq2001.302275x
[9] Diaz RJ, Rosenberg R ( 1995) Marine benthic hypoxia: A review of its ecological effects and the behavioural response of benthic macrofauna. Oceanography and Marine Biology, 33, 245-303.
[10] Diaz RJ, Rosenberg R ( 2008) Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929.
doi: 10.1126/science.1156401
[11] Gong SB, Gao AG, Ni GT, Zhu XX, Zhang YP, Hou YT ( 2017) Progress in research of hypoxia in estuaries and coastal areas in China. Water Resources Protection, 33(4), 62-69. (in Chinese with English abstract)
doi: 10.3880/j.issn.1004-6933.2017.04.010
[ 龚松柏, 高爱国, 倪冠韬, 朱旭旭, 张延颇, 侯昱廷 ( 2017) 中国部分河口及其近海水域缺氧现象研究. 水资源保护, 33(4), 62-69.]
doi: 10.3880/j.issn.1004-6933.2017.04.010
[12] Gooday AJ, Levin LA, Silva AAD, Bett BJ, Cowie GL ( 2009) Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research II: Topical Studies in Oceanography, 56, 488-502.
[13] Gray JS, Wu RSS, Ying Y ( 2002) Effects of hypoxia and organic enrichment on the marine environment. Marine Ecology Progress, 238, 249-279.
doi: 10.3354/meps238249
[14] Gu XL, Xu ZL ( 2009) A review on the effects of hypoxia on aquatic animals in estuaries. Marine Fisheries, 31, 426-437. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-2490.2009.04.013
[ 顾孝连, 徐兆礼 ( 2009) 河口及近岸海域低氧环境对水生动物的影响. 海洋渔业, 31, 426-437.]
doi: 10.3969/j.issn.1004-2490.2009.04.013
[15] Li DJ, Zhang J, Wu Y, Liang J, Huang DJ ( 2002) Loss of oxygen outside the Changjiang Estuary. Science in China, 32, 686-694. (in Chinese)
doi: 10.3321/j.issn:1006-9267.2002.08.009
[ 李道季, 张经, 吴莹, 梁俊, 黄大吉 ( 2002) 长江口外氧的亏损. 中国科学, 32, 686-694.]
doi: 10.3321/j.issn:1006-9267.2002.08.009
[16] Li XZ, Liu LS, Li BQ ( 2010) The Macrobenthic Assemblages in China: Research and Practice. China Ocean Press, Beijing. (in Chinese)
[ 李新正, 刘录三, 李宝泉 ( 2010) 中国海洋大型底栖生物: 研究与实践. 海洋出版社, 北京.]
[17] Li YY, Wang ZM ( 2006) The relation among dissolution oxygen (DO) to COD, inorganic nitrogen, reactive phosphate and primary yield-power in the Liaodong Gulf and seaport of Daliaohe. Environmental Monitoring in China, 22(3), 70-72. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6002.2006.03.023
[ 李艳云, 王作敏 ( 2006) 大辽河口和辽东湾海域水质溶解氧与COD、无机氮、磷及初级生产力的关系. 中国环境监测, 22(3), 70-72.]
doi: 10.3969/j.issn.1002-6002.2006.03.023
[18] Liu HX ( 2012) Study on main influencing factors of formation and deterioration of summer hypoxia off the Yangtze River Estuary. Advance in Marine Science, 30, 186-197. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-6647.2012.02.004
[ 刘海霞 ( 2012) 长江口夏季低氧区形成及加剧的成因分析. 海洋科学进展, 30, 186-197.]
doi: 10.3969/j.issn.1671-6647.2012.02.004
[19] Luo L, Li SY, Wang DX ( 2008) Modelling of hypoxia in the Pearl River Estuary in summer. Advances in Water Science, 19, 729-735. (in Chinese with English abstract)
[ 罗琳, 李适宇, 王东晓 ( 2008) 珠江河口夏季缺氧现象的模拟. 水科学进展, 19, 729-735.]
[20] Margalef R ( 1968) Perspectives in Ecological Theory. University of Chicago Press, Chicago.
[21] Meng CX, Deng CM, Yao P, Zhang XQ, Mi TZ, Chen HT, Yu ZG ( 2005) Dissolved oxygen in the Xiaoqinghe Estuary and adjacent waters. Marine Environmental Science, 24(3), 25-28. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6336.2005.03.007
[ 孟春霞, 邓春梅, 姚鹏, 张欣泉, 米铁柱, 陈洪涛, 于志刚 ( 2005) 小清河口及邻近海域的溶解氧. 海洋环境科学, 24(3), 25-28.]
doi: 10.3969/j.issn.1007-6336.2005.03.007
[22] Nilsson HC, Rosenberg R ( 1994) Hypoxic response of two marine benthic communities. Marine Ecology Progress, 115, 209-217.
doi: 10.3354/meps115209
[23] Pielou EC ( 1975) Ecology Diversity. Wiley-Inters, New York.
[24] Ran XB, Zang JY, Wei QS, Guo JS, Yin XF, Liu W, Liu J ( 2012) Hypoxia and its cause of formation in the adjacent waters of Rushan Bay. Advances in Marine Science, 30, 347-356. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-6647.2012.03.005
[ 冉祥滨, 臧家业, 韦钦胜, 郭景松, 尹晓斐, 刘玮, 刘军 ( 2012) 乳山湾邻近海域低氧现象及成因浅析. 海洋科学进展, 30, 347-356.]
doi: 10.3969/j.issn.1671-6647.2012.03.005
[25] Shannon CE, Weaver W ( 1949) The Mathematical Theory of Communication. University of Illinois Press, Urbanna.
[26] Stachowitsch M ( 1991) Anoxia in the Northern Adriatic Sea: Rapid death, slow recovery. Modern & Ancient Continental Shelf Anoxia, 58, 119-129.
doi: 10.1144/GSL.SP.1991.058.01.09
[27] Steckbauer A, Duarte CM, Carstensen J, Vaquer-Sunyer R, Conley DJ ( 2011) Ecosystem impacts of hypoxia: Thresholds of hypoxia and pathways to recovery. Environmental Research Letters, 6, 025003.
doi: 10.1088/1748-9326/6/2/025003
[28] Sturdivant SK, Seitz RD, Diaz RJ ( 2013) Effects of seasonal hypoxia on macrobenthic production and function in the Rappahannock River, Virginia, USA. Marine Ecology Progress Series, 490, 53-68.
doi: 10.3354/meps10470
[29] Vaquer-Sunyer R, Duarte CM ( 2008) Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, USA, 105, 15452-15457.
doi: 10.1073/pnas.0803833105
[30] Wang QC, Li BQ ( 2013) Community structure of macrobenthos in coastal water off Yantai, East China. Oceanologia et Limnologia Sinica, 44, 1667-1680. (in Chinese with English abstract)
doi: 10.11693/hyhz20130300003
[ 王全超, 李宝泉 ( 2013) 烟台近海大型底栖动物群落特征. 海洋与湖沼, 44, 1667-1680.]
doi: 10.11693/hyhz20130300003
[31] Wang QN, Yan T, Zhou MJ ( 2012) Research progress on cause of hypoxia and its influence in coastal and estuary region. Marine Environmental Science, 31, 775-778. (in Chinese with English abstract)
[ 王巧宁, 颜天, 周名江 ( 2012) 近岸和河口低氧成因及其影响的研究进展. 海洋环境科学, 31, 775-778.]
[32] Wang YM, Li DJ, Fang T, Liu ZG, He SQ ( 2008) Study on relation of distribution of benthos and hypoxia in Yangtze River Estuary and adjacent sea. Marine Environmental Science, 27(2), 41-66. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6336.2008.02.010
[ 王延明, 李道季, 方涛, 刘志刚, 何松琴 ( 2008) 长江口及邻近海域底栖生物分布及与低氧区的关系研究. 海洋环境科学, 27(2), 41-66.]
doi: 10.3969/j.issn.1007-6336.2008.02.010
[33] Wu RSS ( 2002) Hypoxia: From molecular responses to ecosystem responses. Marine Pollution Bulletin, 45, 35-45.
doi: 10.1016/S0025-326X(02)00061-9 pmid: 12398365
[34] Yang D, Zhou ZQ, Zhang JS, Liu TT, Li XJ, Ai BH, Li BQ, Chen LL ( 2017) Characteristics of macrobenthic communities at the Muping Marine Ranch of Yantai in summer. Marine Sciences, 41(5), 136-145. (in Chinese with English abstract)
doi: 10.11759//hykx20170315002
[ 杨东, 周政权, 张建设, 刘甜甜, 李晓静, 艾冰花, 李宝泉, 陈琳琳 ( 2017) 烟台牟平海洋牧场夏季大型底栖动物群落特征. 海洋科学, 41(5), 136-145.]
doi: 10.11759//hykx20170315002
[35] Ye F, Huang XP ( 2010) The status, causes, and ecological effects of coastal hypoxia. Transactions of Oceanology and Limnology, ( 3), 91-99. (in Chinese with English abstract)
[ 叶丰, 黄小平 ( 2010) 近岸海域缺氧现状、成因及其生态效应. 海洋湖沼通报, ( 3), 91-99.]
[36] Zhang YY, Zhang J, Wu Y, Zhu ZY ( 2007) Characteristics of dissolved oxygen and its affecting factors in the Yangtze Estuary. Environmental Science, 28, 1649-1654. (in Chinese with English abstract)
[ 张莹莹, 张经, 吴莹, 朱卓毅 ( 2007) 长江口溶解氧的分布特征及影响因素研究. 环境科学, 28, 1649-1654.]
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[3] Yunzhi Qin,Jiaxin Zhang,Jianming Liu,Mengting Liu,Dan Wan,Hao Wu,Yang Zhou,Hongjie Meng,Zhiqiang Xiao,Handong Huang,Yaozhan Xu,Zhijun Lu,Xiujuan Qiao,Mingxi Jiang. Community composition and spatial structure in the Badagongshan 25 ha Forest Dynamics Plot in Hunan Province [J]. Biodiv Sci, 2018, 26(9): 1016-1022.
[4] Wei Mo,Zhiliang Wang,You Li,Jianjun Guo,Runzhi Zhang. Faunal communities of deep soil layers in suburban Beijing [J]. Biodiv Sci, 2018, 26(3): 248-257.
[5] Yuhang Li, Wandong Chen, Houcai Cai, Zhongmin Sun, Kuidong Xu. Spatio-temporal variation of benthic diatom diversity and community structure in a sandy intertidal zone of the Nanji Islands, China [J]. Biodiv Sci, 2017, 25(9): 981-989.
[6] Ling-Zhao TAN, Chun-Yu FAN, Xiu-Hua FAN. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China [J]. Chin J Plan Ecolo, 2017, 41(11): 1149-1156.
[7] Hongying Zhou, Xuemei Yao, Li Li, Taonian Geng, Ying Zhang. Scleractinian coral community structure and distribution in the coastal waters surrounding Hainan Island [J]. Biodiv Sci, 2017, 25(10): 1123-1130.
[8] Quan FANG, Yi-Zhen LIU, Gang GE. Characteristics of plant communities containing rare conifers in Poyang Lake Basin, China [J]. Chin J Plan Ecolo, 2016, 40(9): 952-957.
[9] Hongyan Liu,Chaojie Yang,Peidong Zhang,Wentao Li,Xiaolong Yang,Xiumei Zhang. Demersal nekton community structure of artificial reef zones in Laoshan Bay, Qingdao [J]. Biodiv Sci, 2016, 24(8): 896-906.
[10] Deyi Wang,Jianfeng Hao,Yan Li,Jinqiu Qi,Zengli Pei,Yujia Huang,Qian Jiang,Ya Chen. Examination of edge effects in a Cryptomeria fortunei plantation in Zhougong Mountain, western Sichuan [J]. Biodiv Sci, 2016, 24(8): 940-947.
[11] Mei Yang,Xinzheng Li,Yong Xu,Hongfa Wang,Baolin Zhang. Seasonal variations in macrobenthic communities in the subtidal zones of Jiaozhou Bay [J]. Biodiv Sci, 2016, 24(7): 820-830.
[12] Chaofeng Wang,Haibo Li,Wuchang Zhang,Li Zhao,Yuan Zhao,Tian Xiao. Analyzing the tintinnid community structure and distribution in the surface waters southeast of Hawaii from a cruise in 2013 [J]. Biodiv Sci, 2016, 24(7): 831-837.
[13] Jun Sun,Bing Xue. Marine phytoplankton diversity and the impact of global climate change [J]. Biodiv Sci, 2016, 24(7): 739-747.
[14] Zhi-Gao WANG, Zhong-Xin ZHANG, Wen-Ge WANG, Jun CHU. Preliminary analysis of forest community structure of Yaoluoping National Nature Reserve in Yuexi County, Anhui Province, China [J]. Chin J Plan Ecolo, 2016, 40(6): 615-619.
[15] Ye Liu,Yue Xu,Songlin Shi,Peihao Peng,Zehao Shen. Quantitative classification and environmental interpretations for the structural differentiation of the plant communities in the dry valley of Jinshajiang River [J]. Biodiv Sci, 2016, 24(4): 407-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Kai-fa. Palynological Analysis Peat-bogs of Siyao Lake, Mount Hsishan, Nanchang, Kiangsi Province[J]. J Integr Plant Biol, 1974, 16(1): .
[2] HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation[J]. Chin J Plan Ecolo, 2015, 39(8): 797 -806 .
[3] ZHANG Xiu-Jun, XU Hui, CHEN Guan-Xiong. N2O Emission Rate from Trees[J]. Chin J Plan Ecolo, 2002, 26(5): 538 -542 .
[4] Qian-Jin Cao, Hui Xia , Xiao Yang and Bao-Rong Lu. Performance of Hybrids between Weedy Rice and Insect-resistant Transgenic Rice under Field Experiments: Implication for Environmental Biosafety Assessment[J]. J Integr Plant Biol, 2009, 51(12): 1138 -1148 .
[5] YAN Kai, FU Deng-Gao, HE Feng, DUAN Chang-Qun. Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China[J]. Chin J Plan Ecolo, 2011, 35(4): 353 -361 .
[6] Ni Wen. EFFECT OF VARIOUS LIGHT QUALITIES 0N GR0WTH 0F RICE SEEDLlNGS[J]. Plant Diversity, 1980, 2(02): 1 -3 .
[7] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[8] XU Yue, SHEN Ze-Hao, Lü Nan, TANG Yuan-Yuan, LI Dao-Xin, WANG Gong-Fang, TAN Jia-Lin, and LIU Yi-Ping. Ten years’ observation of seed rain in a Fagus lucida community in Dalaoling Nature Reserve in the Three Gorges: seed rain density, species composition and their correlation with the community[J]. Chin J Plan Ecolo, 2012, 36(8): 708 -716 .
[9] Hong Ma, Kang Chong and Xing-Wang Deng. Rice Research: Past, Present and Future[J]. J Integr Plant Biol, 2007, 49(6): 729 -730 .
[10] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .