Biodiversity Science ›› 2018, Vol. 26 ›› Issue (11): 1204-1211.doi: 10.17520/biods.2018044

• Original Papers • Previous Article     Next Article

Population genetic structure of Gonionemus vertens based on the mitochondrial COI sequence

Qingqing Liu1, 2, Zhijun Dong1, 3, *()   

  1. 1 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Muping Coastal Environment Research Station, Yantai, Shandong 264003
    2 University of Chinese Academy of Sciences, Beijing 101408
    3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071
  • Received:2018-03-08 Accepted:2018-07-04 Online:2019-01-08
  • Dong Zhijun E-mail:zjdong@yic.ac.cn
  • About author:

    # Co-first authors

Gonionemus vertens is widely distributed throughout the Atlantic and Pacific Oceans and is one of venomous jellyfish species in China. To investigate the population genetic structure of G. vertens, we sequenced the mtDNA COI gene in 104 individuals collected from four geographic locations along the coast of the Yellow Sea and the Bohai Sea, and the homologous sequences of other 182 individuals which were obtained from GenBank were also analyzed. A total of 52 polymorphic nucleotide sites were detected among the 286 individuals, which defined 14 haplotypes. The overall haplotype diversity and nucleotide diversity were 0.743 ± 0.012 and 1.046% ± 0.097%, respectively. Compared with several other giant jellyfish species, the genetic diversity of G. vertens was at the higher level. AMOVA analysis indicated that extremely significant difference existed among the groups, within populations and among the populations within groups, with 60.17% molecular variation among the groups, 13.37% molecular variation within populations, and 26.46% molecular variation among the populations within groups. Pairwise fixation index (Fst) values showed that significant population structure existed between the G. vertens population collected in Xiamen waters with other populations collected from Laoting, Dongying, Yantai, and Dalian waters, and the population structure throughout Dalian with Dongying, or with Yantai were also significant. Phylogeographic analysis of the COI region revealed two lineages. The results indicated that the complex life cycle characteristics, dispersal ability, geographic isolation, together with the prevailing ocean currents in this region, may be important factors influencing the genetic structure of G. vertens.

Key words: Gonionemus vertens, mtDNA, DNA barcode, population genetic structure, genetic differentiation

Fig. 1

Sketch map of sampling sites of Gonionemus vertens"

Table 1

Locations, number of individuals and diversity parameters for the population of Gonionemus vertens"

采样点
Site
样本量
N
单倍型
H
单倍型组成(样本数)
Haplotype composition (No. of inds.)
单倍型多样性
Hd
核苷酸多样性
π (%)
GenBank序列号
GenBank accession
no.
西北大西洋 Northwest Atlantic (NWA)
美国新罕布什尔州大海湾
Great Bay, New Hampshire, America (GB)
7 2 Hap1(3); Hap14(4) 0.571 ± 0.119 0.912 ± 0.191 KY437905-911
美国雅茅斯巴斯河
Bass River, Yarmouth, America (BR)
17 3 Hap1(2); Hap12(12); Hap14(3) 0.485 ± 0.126 1.004 ± 0.270 KY437888-904
美国马什皮汉布林池塘
Hamblin Pond, Mashpee, America (HP)
18 1 Hap12(18) 0 0 KY437834-851
美国奥克布拉夫斯农场池塘
Farm Pond, Oak Bluffs, America (FP)
17 2 Hap1(1); Hap12(16) 0.118 ± 0.101 0.164 ± 0.141 KY437814-830
美国埃德加敦森格肯塔克池塘
Sengekontacket Pond, Edgartown, America (SG)
3 2 Hap1(2); Hap12(1) 0.667 ± 0.314 0.931 ± 0.439 KY437831-833
美国北金斯敦波特池塘
Potter Pond, North Kingston, America (PP)
22 2 Hap1(2); Hap12(20) 0.173 ± 0.101 0.242 ± 0.141 KY437912-933
美国格罗顿芒福德湾
Mumford Cove, Groton, America (MC)
14 2 Hap1(13); Hap12(1) 0.143 ± 0.119 0.200 ± 0.166 KY437934-947
美国格罗顿松岛
Pine Island, Groton, America (PI)
24 2 Hap1(23); Hap12(1) 0.083 ± 0.075 0.116 ± 0.105 KY437864-887
西北太平洋 Northwest Pacific (NWP)
俄罗斯阿穆尔湾
Amur Bay, Peter the Great Gulf, Russia (AB)
3 1 Hap1(3) 0 0 KY437948-950
俄罗斯沃斯托克湾
Vostok Bay, Peter the Great Gulf, Russia (VB)
30 2 Hap1(26); Hap11(4) 0.239 ± 0.092 0.048 ± 0.018 KY437951-980
日本越喜来湾 Okirai Bay, Japan (JP) 12 2 Hap1(1); Hap2(11) 0.167 ± 0.134 0.100 ± 0.080 KY437852-863
中国厦门 Xiamen, China (XM) 10 1 Hap10(10) 0 0 KF962130-139
中国烟台 Yantai, China (YT) 27 5 Hap2(23); Hap3(1); Hap4(1); Hap8(1); Hap9(1) 0.279 ± 0.112 0.148 ± 0.095 MH020717-743
中国大连 Dalian, China (DL) 30 4 Hap1(6); Hap2(19); Hap5(4); Hap6(1) 0.559 ± 0.086 0.307 ± 0.058 MH020640-669
中国东营 Dongying, China (DY) 18 1 Hap2(18) 0 0 MH020670-687
中国乐亭 Laoting, China (LT) 29 3 Hap1(2); Hap2(25); Hap7(2) 0.256 ± 0.102 0.106 ± 0.050 MH020688-716
东北太平洋 Northeast Pacific (NEP)
美国圣胡安岛 San Juan Island, America (FH) 4 1 Hap13(4) 0 0 KY437982-985
东北大西洋 Northeast Atlantic (NEA)
冰岛阿夫塔内斯 Álftanes, Iceland (IC) 1 1 Hap13(1) 0 0 KY437981
总群体 Total - 286 14 - 0.743 ± 0.012 1.046 ± 0.097

Table 2

Spatial analysis of molecular variance among population of Gonionemus vertens"

变异来源 Source of variation 自由度 d.f. 平方和 Sum of squares 方差比例 % of variation F P
群组间 Among groups 3 362.274 60.17 Fsc = 0.66436 0.0000
组内群体间 Among populations within groups 14 247.509 26.46 Fst = 0.86631 0.0000
群体内 Within populations 268 136.735 13.37 Fct = 0.60168 0.0002
总计 Total 285 746.517 100

Fig. 2

Phylogenetic trees within Gonionemus vertens derived by Bayesian inference"

Fig. 3

Median-joining haplotype network of Gonionemus vertens based on the combined sequence of COI. The color fan area indicates the proportion of each sample population in the same haplotype; the circle area indicates the frequency of haplotype occurrence; the red dot represents the intermediate mutation node. The abbreviation of the sampling points in the figure is consistent with Table 1."

[5] Dawson MN, Gupta AS, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences, USA, 102, 11968-11973.
[6] Dong ZJ, Liu ZY, Liu DY (2015) Genetic characterization of the scyphozoan jellyfish Aurelia spp. in Chinese coastal waters using mitochondrial markers. Biochemical Systematics and Ecology, 60, 15-23.
[7] Dong ZJ, Liu ZY, Liu DY, Liu QQ, Sun TT (2016) Low genetic diversity and lack of genetic structure in the giant jellyfish Nemopilema nomurai in Chinese coastal waters. Marine Biology Research, 12, 769-775.
[8] Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
[9] Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Molecular Phylogenetics and Evolution, 38, 820-834.
[10] Govindarajan AF, Carman MR, Khaidarov MR, Semenchenko A, Wares JP (2017) Mitochondrial diversity in Gonionemus (Trachylina: Hydrozoa) and its implications for understanding the origins of clinging jellyfish in the Northwest Atlantic Ocean. PeerJ, 5, e3205.
[11] Hall BG (2004) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Molecular Biology and Evolution, 22, 792-802.
[12] Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[13] Harrison JS (2004) Evolution, biogeography, and the utility of mitochondrial 16S and COI genes in phylogenetic analysis of the crab genus Austinixa (Decapoda: Pinnotheridae). Molecular Phylogenetics and Evolution, 30, 743-754.
[14] Hebert PDN, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321.
[15] Jiang HC, Liu N, Gao JQ, Su B, Li JH, He JL, Liu AY (2017) Zooplankton community structure in Sishili Bay and its relationship with environmental factors. Acta Ecologica Sinica, 37, 1318-1327. (in Chinese with English abstract)
[姜会超, 刘宁, 高继庆, 苏博, 李佳蕙, 何健龙, 刘爱英 (2017) 烟台四十里湾浮游动物群落特征及与环境因子的关系. 生态学报, 37, 1318-1327.]
[16] Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
[17] Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
[18] Li YL, Dong J, Wang B, Li YP, Yu XG, Fu J, Wang WB (2016) Genetic characterization of different populations of Rhopilema esculentum based on the mitochondrial COI sequence. Chinese Journal of Applied Ecology, 27, 2340-2347. (in Chinese with English abstract)
[李玉龙, 董婧, 王彬, 李轶平, 于旭光, 付杰, 王文波 (2016) 基于线粒体COI基因的海蜇不同地理群体遗传特征. 应用生态学报, 27, 2340-2347.]
[19] Li YL, Kong XY, Yu ZN, Kong J, Ma S, Chen LM (2009) Genetic diversity and historical demography of Chinese shrimp Feneropenaeus chinensis in Yellow Sea and Bohai Sea based on mitochondrial DNA analysis. African Journal of Biotechnology, 8, 1193-1202.
[20] Neigel JE, Avise JC (1993) Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics, 135, 1209-1220.
[21] Nylander JAA, Olsson U, Alström P, Sanmartín I (2008) Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Systematic Biology, 57, 257-268.
[22] Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547-572.
[23] Pigulevsky SV, Michaleff PV (1969) Poisoning by the medusa Gonionemus vertens in the sea of Japan. Toxicon, 7, 145-149.
[24] Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.
[25] Stabile J, Waldman JR, Parauka F, Wirgin I (1996) Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA. Genetics, 144, 767-775.
[26] Stopar K, Ramšak A, Trontelj P, Malej A (2010) Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Molecular Phylogenetics and Evolution, 57, 417-428.
[27] Tian JL (1987) Preliminary exploration of Gonionemus vertens in the sea of Jiaozhou Bay. Journal of Biology, 15, 17-18. (in Chinese)
[田金良 (1987) 胶州湾钩手水母初探. 生物学杂志, 15, 17-18.]
[28] Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
[29] Ward RD, Woodwark M, Skibinskid OF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. Journal of Fish Biology, 44, 213-232.
[30] Wright S (1943) Isolation by distance. Genetics, 28, 114.
[31] Wright S (1949) The genetical structure of populations. Annals of Human Genetics, 15, 323-354.
[32] Yakovlev YM, Vaskovsky VE (1993) The toxic krestovik medusa Gonionemus vertens. Russian Journal of Marine Biology, 19, 287-294.
[33] Zhang DN, Zheng LM, He JR, Zhang WJ, Lin YS, Li Y (2015) DNA barcoding of hydromedusae in northern Beibu Gulf for species identification. Biodiversity Science, 23, 50-60. (in Chinese with English abstract)
[张珰妮, 郑连明, 何劲儒, 张文静, 林元烧, 李阳 (2015) 基于线粒体COI和16S片段序列的北部湾北部水螅水母 DNA 条形码分析. 生物多样性, 23, 50-60.]
[34] Zhao M, Song W, Ma CY, Zhang FY, Jiang KJ, Song ZM, Ma LB (2015) Population genetic structure of Collichthys lucidus based on the mitochondrial cytochrome oxidase subunit I sequence. Journal of Fishery Sciences of China, 22, 233-242. (in Chinese with English abstract)
[1] Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. Journal of Molecular Evolution, 20, 99-105.
[2] Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
[3] Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, USA, 76, 1967-1971.
[4] Cheng FP, Wang MX, Wang YT, Zhang F, Li CL, Sun S (2012) DNA barcoding of common medusozoa in northern China based on mtCOI sequence. Oceanologia et Limnologia Sinica, 43, 451-459. (in Chinese with English abstract)
[34] [赵明, 宋炜, 马春艳, 张凤英, 蒋科技, 宋志明, 马凌波 (2015) 基于线粒体COI基因序列的棘头梅童鱼7个野生群体遗传结构分析. 中国水产科学, 22, 233-242.]
[4] [程方平, 王敏晓, 王彦涛, 张芳, 李超伦, 孙松 (2012) 中国北方习见水母类的DNA条形码分析. 海洋与湖沼, 43, 451-459.]
[1] Qingsong Zhou Chao-Dong ZHU Zhi-Shu XIAO. (2020) Advances in techniques and methods of wildlife monitoring . Chin J Plant Ecol, 44(生态技术与方法专辑): 0-0.
[2] Shu Jiangping, Luo Junjie, Wei Hongjin, Yan Yuehong. (2018) Clarifying the Taxonomic Status of Dryopteris yenpingensis based on Materials from the Type Locality . Chin Bull Bot, 53(6): 793-800.
[3] Xingtong Wu,Lu Chen,Minqiu Wang,Yuan Zhang,Xueying Lin,Xinyu Li,Hong Zhou,Yafeng Wen. (2018) Population structure and genetic divergence in Firmiana danxiaensis . Biodiv Sci, 26(11): 1168-1179.
[4] Song Huifang, Liu Haishuang, Yang Yiming, Fan Shutian, Li Changyu, Ai Jun. (2017) Screening of Universal DNA Barcodes for Vitis amurensis . Chin Bull Bot, 52(6): 723-732.
[5] Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO, Yu-Bao GAO. (2017) Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis . Chin J Plan Ecolo, 41(3): 359-368.
[6] Ruoyu Liu,Zhongmin Sun,Jianting Yao,Zimin Hu,Delin Duan. (2016) Genetic diversity of the habitat-forming red alga Gracilaria vermiculophylla along Chinese coasts . Biodiv Sci, 24(7): 781-790.
[7] Gangbiao Xu,Yan Liang,Yan Jiang,Xiongsheng Liu,Shangli Hu,Yufei Xiao,Bobo Hao. (2013) Genetic diversity and population structure of Bretschneidera sinensis, an endangered species . Biodiv Sci, 21(6): 723-731.
[8] Kai He, Wenzhi Wang, Quan Li, Peipeng Luo, Yuehua Sun, Xuelong Jiang. (2013) DNA barcoding in surveys of small mammal community: a case study in Lianhuashan, Gansu Province, China . Biodiv Sci, 21(2): 197-205.
[9] Rong Zhou, Jiaqi Li, You Li, Naifa Liu, Fengjie Fang, Limin Shi, Ying Wang. (2012) Genetic variation in rusty-necklaced partridge (Alectoris magna) detected by mitochondrial DNA . Biodiv Sci, 20(4): 451-459.
[10] Biyun Chen, Qiong Hu, Christina Dixelius, Guoqing Li, Xiaoming Wu. (2010) Genetic diversity in Sclerotinia sclerotiorum assessed with SRAP markers . Biodiv Sci, 18(5): 509-515.
[11] Junhong Zhang, Huahong Huang, Zaikang Tong, Longjun Cheng, Yuelong Liang, Yiliang Chen. (2010) Genetic diversity in six natural populations of Betula luminifera from southern China . Biodiv Sci, 18(3): 233-240.
[12] Gen Zhang, Yilong Xi, Yinghao Xue, Xin Hu, Xianling Xiang, Xinli Wen. (2010) Effects of coal ash pollution on the genetic diversity of Brachionus calyciflorus based on rDNA ITS sequences . Biodiv Sci, 18(3): 241-250.
[13] Hongtuo Fu, Hui Qiao, Jianhua Yao, Yongsheng Gong, Yan Wu, Sufei Jiang, Yiwei Xiong. (2010) Genetic diversity in five Macrobrachium hainanense populations using SRAP markers . Biodiv Sci, 18(2): 145-149.
[14] Yinghui Ling, Yuejiao Cheng, Yanping Wang, Weijun Guan, Jianlin Han, Baoling Fu, Qianjun Zhao, Xiaohong He, Yabin Pu, Yuehui Ma. (2009) Genetic diversity of 23 Chinese indigenous horse breeds revealed by mi-crosatellite markers . Biodiv Sci, 17(3): 240-247.
[15] Xuelan Yan, Wenqiao Tang, Jinquan Yang. (2009) Population genetic structure of tapertail anchovy (Coilia mystus) in coastal waters of southeast China based on mtDNA control region se-quences . Biodiv Sci, 17(2): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed