Biodiversity Science ›› 2017, Vol. 25 ›› Issue (11): 1182-1191.doi: 10.17520/biods.2017167

;

• Original Papers: Plant Diversity • Previous Article     Next Article

The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest

Xiaobo Huang1, 2, Shuaifeng Li1, 2, Jianrong Su1, 2, *(), Wande Liu1, 2, Xuedong Lang1, 2   

  1. 1 Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224
    2 Pu’er Forest Ecosytem Research Station, State Forest Administration, Kunming 650224;
  • Received:2017-06-05 Accepted:2017-11-20 Online:2017-11-20
  • Su Jianrong E-mail:jianrongsu@vip.sina.com

Under global climate change, biodiversity is decreasing rapidly due to deforestation and habitat fragmentation, which has serious consequences for ecosystem functioning. In recent years, the relationship between biodiversity and ecosystem functioning has been a core research area in ecology. Previous researchers have paid great attention to the relationship between biodiversity and individual ecosystem functioning, and seldom consider multiple functions (multifunctionlity), especially in forest ecosystems. Here, based on survey data from 94 plots of Pinus yunnanensis in a natural secondary forest, we selected variables related to ecosystem functioning: woody plant biomass, soil organic carbon, plant nitrogen, plant phosphorus, soil total nitrogen, soil hydrolyzable nitrogen, soil total phosphorus, and soil available phosphorus. We used an averaging approach, single threshold approach, and multiple threshold approach to evaluate the effects of species richness on ecosystem multifunctionality and impacting factors. Results showed that the relationship between species richness and ecosystem multifunctionality was stronger than that of individual ecosystem functioning. Species richness had a significant positive effect on multifunctionality within thresholds ranging from 3% to 88%. When using a moderate threshold (54%), species richness had the strongest positive effect, and the percentage of maximum possible species richness was 53.53%. Path analysis of a structural equation model showed that species richness had the strongest (positive) effect on multifunctionality in the Pinus yunnanensis natural secondary forest. Mean annual temperature, mean annual precipitation, and soil pH had insignificant effects on multifunctionality, but indirect effects via influences on species richness. Species richness may be of primary importance when considering ecosystem multifunctionality. Increasing species numbers may not always lead to the optimal state of all functions. Increasing species numbers had the strongest effects on multifunctionality, but only once multifunctionality reached moderate levels.

Key words: Pinus yunnanensis, biodiversity, species richness, structural equation modeling, ecosystem multifunctionality

Table 1

Relationships between species richness and individual ecosystem functioning, ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest"

功能指标 Function parameters 物种丰富度
Speicies richness
R2 P
植物氮 Plant nitrogen 0.01 P = 0.310
植物磷 Plant phosphorus 0.26 P < 0.001
土壤水解性氮 Soil hydrolyzable nitrogen 0.20 P < 0.001
土壤有效磷 Soil available phosphorus 0.20 P < 0.001
土壤全氮 Soil total nitrogen 0.19 P < 0.001
土壤全磷 Soil total phosphorus 0.13 P < 0.001
土壤有机碳 Soil organic carbon 0.26 P < 0.001
木本植物生物量 Woody plant biomass 0.04 P < 0.001
生态系统多功能性 Ecosystem multifunctionality 0.39 P < 0.001

Fig. 1

The effect of species richness at different thresholds in the Pinus yunnanensis natural secondary forest. The effect represent the slope of the relationship between species richness and the number of functions beyond a threshold of the maximum observed value. Points are the fitted values and shading indicated ±1 confidence interval."

Fig. 2

The relationship between species richness of Pinus yunnanensis natural secondary forest and the number of functions beyond a threshold of the maximum observed value at different thresholds. The percentage in rectangle frames represent four different threshold values (20%, 40%, 60%, and 80% of maximum)."

Fig. 3

Structural equation models (SEM) of biotic and abiotic factors as predictors of ecosystem multifunctionality (EMF). Solid arrows represent extremely significant (P < 0.01); dotted grey arrows represent non-significant paths (P > 0.05). Path coefficients (β) are on the arrows. Plant SR, Plant species richness; MAT, Mean annual temperature; MAP, Mean annual precipitation."

[1] Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottinggham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science, 333, 1750-1753.
[2] Adler PB, Levine JM (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos, 116, 221-232.
[3] Ali A, Xu MS, Zhao YT, Zhang QQ, Zhou LL, Yang XD, Yan ER (2015) Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fennica, 49, 1-10.
[4] Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Kathryn Morris E, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Stechel J, Steffen- Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Weiner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.
[5] Bao SD (2000) Soil Agro-chemistry Analysis. China Agricultural Press, Beijing. (in Chinese)
[鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.]
[6] Bradford MA, Wood SA, Bardgett RD, Black HIJ, Bonkowski M, Eggers T, Grayston SJ, Kandeler E, Manning P, Setälä H, Jones TH (2014) Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences, USA, 111, 14478-14483.
[7] Brandt P, Abson DJ, Dellasala DA, Feller R, Wehrden HV (2014) Multifunctionality and biodiversity: ecosystem services in temperate rainforests of the Pacific Northwest, USA. Biological Conservation, 169, 362-371.
[8] Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150267.
[9] Butchart SH, WalpoleM, Collen B, van Strien A, Scharlemann JP, Almond RE, Baillie JE, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández Morcillo M, Oldfield TE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science, 328, 1164-1168.
[10] Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Caedinale BJ, Hooper DU, Dee LE, Duffy JE (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology & Evolution, 5, 111-124.
[11] Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature, 472, 86-89.
[12] Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
[13] Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992.
[14] Compilation Group of the Vegetation of Yunnan(1987) Vegetation of Yunnan. Science Press, Beijing. (in Chinese)
[云南植被编写组(1987)云南植被 . 科学出版社, 北京.]
[15] Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffeies TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
[16] Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676.
[17] Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, USA, 105, 6087-6090.
[18] Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
[19] Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340.
[20] Garssen AG, Baattrup-Pedersen A, Riis T, Raven BM, Hoffman CC, Verhoeven JTA, Soons MB (2017) Effects of increased flooding on riparian vegetation: field experiments simulating climate change along five European lowland streams. Global Change Biology, 23, 3052-3063.
[21] Genet A, Wernsdörfer H, Jonard M, Pretzsch H, Rauch M, Ponette Q, Nys C, Legout A, Ranger J, Vallet P, Saint-André L (2011) Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology & Management, 261, 1188-1202.
[22] Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology, 27, 605-614.
[23] Härtl FH, Barka I, Hahn WA, Hlásny T, Irauschek F, Knoke T, Lexer MJ, Griess VC (2016) Multifunctionality in European mountain forests—an optimization under changing climatic. Canadian Journal of Forest Research, 46, 163-171.
[24] He JZ, Ge Y, Xu Z, Chen C (2009) Linking soil bacterial diversity to ecosystem multifunctionality using backward- elimination boosted trees analysis. Journal of Soils and Sediments, 9, 547-554.
[25] Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
[26] Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CP, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in european grasslands. Science, 286, 1123-1127.
[27] Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-109.
[28] Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202.
[29] Jax K (2010) Ecosystem Functioning. Cambridge University Press, Cambridge.
[30] Jiang L, Lu YC, Liao SX, Li K, Li GQ (2008) A study on diametral structure of Yunnan pine forest in the plateaus of mid-Yunnan Province. Forest Research, 21, 125-130. (in Chinese with English abstract)
[姜磊, 陆元昌, 廖声熙, 李昆, 李根前 (2008) 滇中高原云南松林分直径结构研究. 林业科学研究, 21, 125-130.]
[31] Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015) The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159.
[32] Jin ZZ, Peng J (2004) Pinus yunnanensis. Yunnan Science and Technology Press, Kunming. (in Chinese)
[金振洲, 彭鉴 (2004) 云南松. 云南科技出版社, 昆明.]
[33] Lambert MC, Ung CH, Raulier F (2005) Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35, 1996-2018.
[34] Lefcheck JS, Byrnes JEK, Isbell F, Gamfeld L, Griffin JN, Eisenhauer N, Hensel MJ, Hector A, Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936.
[35] Li GX, Shi HJ, Meng GT, Fang XJ, Chai Y, He LP, Zhang ZH, Yang YX (2007) Community structural properties and species diversity in primary Pinus yunnanensis forest. Journal of Zhejiang Forestry College, 24, 396-400. (in Chinese with English abstract)
[李贵祥, 施海静, 孟广涛, 方向京, 柴勇, 和丽萍, 张正海, 杨永祥 (2007) 云南松原始林群落结构特征及物种多样性分析. 浙江林学院学报, 24, 396-400.]
[36] Li LF, Han MY, Zheng W, Su JW, Li WC, Zheng SH, Gong JB (2009) The causes of formation of low quality forest of Pinus yunnanensis and their classification. Journal of West China Forestry Science, 38(4), 94-99. (in Chinese with English abstract)
[李莲芳, 韩明跃, 郑畹, 苏俊武, 李卫冲, 郑树红, 龚建斌 (2009) 云南松低质低效林的成因及其分类. 西部林业科学, 38(4), 94-99.]
[37] Li JP, Zheng ZR, Zhao NX, Gao YB (2016) Relationship between ecosystem multifunctionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747. (in Chinese with English abstract)
[李静鹏, 郑志荣, 赵念席, 高玉葆 (2016) 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.]
[38] Lohbeck M, Bongers F, Martinez-Ramos M, Poorter L (2016) The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology, 97, 2772-2779.
[39] Maestre FT, Boeken, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.
[40] Mori AS, Isbell F, Fujii S, Makoto K, Matsuoka S, Osono T (2015) Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 19, 249-259.
[41] Oberski D (2014) Lavaan.survey: an R package for complex survey analysis of structural equation models. Journal of Statistical Software, 57, 1-27.
[42] Pasari JR, Levi T, Zavaleta ES, Tilman D (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 110, 10219-10222.
[43] Paul KI, Roxburgh SH, England JR, Brooksbank K, Larmour JS, Ritson P, Wildy D, Sudmeyer R, Raison RJ, Hobbs T, Murphy S, Sochacki S, McArthur G, Barton C, Jonson J, Theiveyanathan S, Carter J (2014) Root biomass of carbon plantings in agricultural landscapes of southern Australia: development and testing of allometrics. Forest Ecology & Management, 318, 216-227.
[44] Pendleton RM, Hoeinghaus DJ, Gomes LC, Agostinho AA (2014) Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment. PLoS ONE, 9, e84568.
[45] Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015) Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406.
[46] R Development Core Team (2016) R: A Language And Environment For Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[47] Roger F, Bertilsson S, Langenheder, S Ahmed O, Gamfeldt L (2016) Multiple dimensions of bacterial diversity unrelated to functioning, stability and multifunctionality. Ecology, 97, 2716-2718.
[48] Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720.
[49] van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes D, Coppi A, Bastias CC, Muhie Dawud, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Müller S, Muys B, Nguyen D, Pollastrini M, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016a) Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nature Communications, 7, 11109.
[50] van der Plas F, Manning P, Soliveres S, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Coomes DA, Coppi A, Bestias CC, Dawud SM, De Wandeler H, Domisch T, Finér L, Gessler A, Granier A, Grossiord C, Guyot V, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Koricheva J, Milligan H, Mueller S, Muys B, Nguyen D, Pollastrini M, Ratcliffe S, Raulund-Rasmussen K, Selvi F, Stenlid J, Valladares F, Vesterdal L, Zielínski D, Fischer M (2016b) Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences, USA, 113, 3557-3562.
[51] Wang GY, Wang TL, Kang HJ, Mang S, Riehl B, Seely B, Liu SR, Guo FT, Li QL, Innes JL (2016) Adaptation of Asia- Pacific forests to climate change. Journal of Forestry Research, 27, 469-488.
[52] Wang ZH, Tang ZY, Fang JY (2009) The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624. (in Chinese with English abstract)
[王志恒, 唐志尧, 方精云 (2009) 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.]
[53] Wu H (2017) Species richness and environmental interpretation of pine and oak forest community in Qinling Mountains. Ecology and Environmental Sciences, 26, 931-938. (in Chinese with English abstract)
[吴昊 (2017) 秦岭松栎林群落物种丰富度特征及其环境解释. 生态环境学报, 26, 931-938.]
[54] Xiong DP, Zhao GS, Wu JS, Shi PL, Zhang XZ (2016) The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 36, 3362-3371. (in Chinese with English abstract)
[熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲 (2016) 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 36, 3362-3371.]
[55] Xu W, Jing X, Ma ZY, He JS (2016a) A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. (in Chinese with English abstract)
[徐炜, 井新, 马志远, 贺金生 (2016a) 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.]
[56] Xu W, Ma ZY, Jing X, He JS (2016b) Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71. (in Chinese with English abstract)
[徐炜, 马志远, 井新, 贺金生 (2016b) 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.]
[57] Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, USA, 107, 1443-1446.
[58] Zhang QG, Zhang DY (2002) Biodiversity and ecosystem functioning: recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract)
[张全国, 张大勇 (2002) 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.]
[1] Na Li Chenchen Ding Dandan Cao Hongjun Chu Yingjie Qi Chunwang Li Xiaoge Ping Yuehua Sun Zhigang Jiang. (2020) Avian species census, richness patterns and faunal composition in the Altay Region, China . Biodiv Sci, 28(4): 401-411.
[2] Lintao Huang Hui Huang Lei Jiang. (2020) A revised taxonomy for Chinese hermatypic corals . Biodiv Sci, 28(4): 515-523.
[3] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. (2020) Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China . Biodiv Sci, 28(2): 219-225.
[4] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. (2020) Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity . Biodiv Sci, 28(2): 244-252.
[5] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China . Biodiv Sci, 28(2): 226-230.
[6] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. (2020) The updated checklists of amphibians and reptiles of China . Biodiv Sci, 28(2): 189-218.
[7] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. (2020) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 99-106.
[8] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. (2020) Threat status of non-lichenized macro-ascomycetes in China and its threatening factors . Biodiv Sci, 28(1): 26-40.
[9] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[10] Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[11] Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[12] Yongmin Li,Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[13] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[14] Zhang Yuanyuan. (2019) China’s strategy for incorporating traditional knowledge associated with biodiversity into international multi-lateral agreements . Biodiv Sci, 27(7): 708-715.
[15] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed