Biodiversity Science ›› 2018, Vol. 26 ›› Issue (2): 171-176.doi: 10.17520/biods.2017080

• Orginal Article • Previous Article     Next Article

Predicting the potential distribution of white-lipped deer using the MaxEnt model

Shaopeng Cui1, 2, 3#, Xiao Luo1, 2#, Chunwang Li1, 2, Huijian Hu4, Zhigang Jiang1, 2, *()   

  1. 1 Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801
    4 Guangdong Institute of Applied Biological Resources, Guangzhou 510260
  • Received:2017-03-15 Accepted:2017-11-16 Online:2018-05-05
  • Jiang Zhigang E-mail:jiangzg@ioz.ac.cn
  • About author:

    # Co-first authors

Species distribution is critical for developing effective conservation measures. The potential geographic distribution of the white-lipped deer (Przewalskium albirostris), which is endemic to the Qinghai- Tibetan Plateau, was delineated using the Maximum Entropy (MaxEnt) model with 97 occurrence records and 7 environmental variables. The species occurrences were collected from literature and field investigations. Our results showed that the potential range of the white-lipped deer included the eastern part of the Qinghai-Tibetan Plateau and the potential habitat spread from one core region to neighboring regions among Tibet, Qinghai, and Sichuan provinces. The Jackknife test indicated that the topographic variable, temperature seasonality, and annual precipitation were the most important predictive factors for the model, while the human activity variable made a relatively small contribution. The current distribution and status of the white-lipped deer on the Qinghai-Tibetan Plateau is unclear and we suggest further research is needed on the species.

Key words: MaxEnt, white-lipped deer, Qinghai-Tibetan Plateau, potential distribution

Table 1

Environmental variables used to model the potential range of the white-lipped deer"

编码 Code 描述 Description 来源 Source
Bio4 气温季节变化 Temperature seasonality WorldClim database Version 1.4
Bio12 年降水量 Annual precipitation WorldClim database Version 1.4
NDVI_Summer 夏季归一化植被指数 Normalized difference vegetation index in summer Chinese Natural Resources Database
Altitude 海拔 Altitude USGS’s Hydro-1K dataset
Slope 坡度 Slope USGS’s Hydro-1K dataset
HFI 人类足迹指数 Human footprint influence Last of the Wild Data Version 2
Stocking rate 放牧强度 Stocking rate Food and Agriculture Organization

Fig. 1

The Jackknife test for evaluating the relative importance of environmental variables in the development of the MaxEnt model. The blue bar shows the “total gain” achieved with the given predictor only. The green bar shows the “total gain” resulting from inclusion of all predictors except the given predictor. The bottom red bar shows the gain with all variables. For variable meanings, see Table 1."

Fig. 2

The potential distribution of white-lipped deer (Przewalskium albirostris) on the Qinghai-Tibetan Plateau"

[1] Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian At¬lantic forest. Journal of Biogeography, 35, 1187-1201.
[2] Engler R, Guisan A, Rechsteiner L (2004) An improved ap- p¬roach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263-274.
[3] Escobar LE, Awan MN, Qiao HJ (2015) Anthropogenic distur- bance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): Using ecological niche modeling and nighttime light satellite imagery. Biological Conservation, 191, 400-407.
[4] Fahrig L (2003) Effects of habitat fragmentation on biodiversi- ty. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.
[5] Geist V (1998) Deer of the World: Their Evolution, Behaviour, and Ecology. Stackpole Books, Mechanicsburg, USA.
[6] Guisan A, Lehmann A, Ferrier S, Austin M, Overton J, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology, 43, 386-392.
[7] Guisan A, Thuiller W (2005) Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993-1009.
[8] Harris RB (2015) Cervus albirostris. The IUCN Red List of Threatened Species 2015: e.T4256A61976756.2015) Cervus albirostris. The IUCN Red List of Threatened Species 2015: e.T4256A61976756. . (accessed on 2016-05-02
[9] Harris RB, Pletscher DH, Loggers CO, Miller DJ (1999) Status and trends of Tibetan plateau mammalian fauna, Yeniugou, China. Biological Conservation, 87, 13-19.
[10] Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on per- formance of different species distribution modeling metho- ds. Ecography, 29, 773-785.
[11] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
[12] Hu JH, Hu HJ, Jiang ZG (2010) The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia, 164, 555-565.
[13] Hughes J, Alexander J, Shi K, Riordan P (2015) Confirmation of threatened white-lipped deer (Przewalskium albirostris) in Gansu and Sichuan, China, and their overlap with livestock. Mammalia, 79, 241-244.
[14] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English)
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
[15] Jiang ZG, Ma KP (2014) The Principles of Conservation Biology. Science Press, Beijing. (in Chinese)
[蒋志刚, 马克平 (2014) 保护生物学原理. 科学出版社, 北京.]
[16] Jiang ZG, Ma Y, Wu Y, Wang YX, Feng ZJ, Zhou KY, Liu SY, Luo ZH, Li CW (2015) Diversity of China’s mammals. Biodiversity Science, 23, 351-364. (in Chinese with English abstract)
[蒋志刚, 马勇, 吴毅, 王应祥, 冯祚建, 周开亚, 刘少英, 罗振华, 李春旺 (2015) 中国哺乳动物多样性. 生物多样性, 23, 351-364.]
[17] Leslie DM (2010) Przewalskium albirostre (Artiodactyla: Cervidae). Mammalian Species, 42, 7-18.
[18] Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778-789.
[19] Luo ZH, Jiang ZG, Tang SH (2015) Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 25, 24-38.
[20] Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069.
[21] Ohtaishi N, Gao Y (1990) A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in China. Mammal Review, 20, 125-144.
[22] Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405-412.
[23] Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.
[24] Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
[25] Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161-175.
[26] Pyron RA, Burbrink FT, Guiher TJ (2008) Claims of potential expansion throughout the US by invasive python species are contradicted by ecological niche models. PLoS ONE, 3, e2931.
[27] Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? Journal of Applied Ecology, 41, 193-200.
[28] Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. BioScience, 52, 891-904.
[29] Saupe EE, Qiao HJ, Hendricks JR, Portell RW, Hunter SJ, Soberón J, Lieberman BS (2015) Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecology and Biogeography, 24, 1159-1169.
[30] Schaller GB (1998) Wildlife of the Tibetan Steppe. University of Chicago Press, Chicago, Illinois.
[31] Smith AT, Xie Y (2009) A Guide to the Mammals of China. Hunan Education Press, Changsha. (in Chinese)
[Smith AT, 解焱 (2009) 中国兽类野外手册. 湖南教育出版社, 长沙.]
[32] State Forestry Administration (2009) A Survey on the Resources of Chinese Key Terrestrial Wildlife. China Forestry Publishing House, Beijing. (in Chinese)
[国家林业局(2009) 中国重点陆生野生动物资源调查. 中国林业出版社, 北京.]
[33] Thorn JS, Nijman V, Smith D, Nekaris KAI (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions, 15, 289-298.
[34] USGS (2001) Hydro-1K Elevation Derivative Database.2001) Hydro-1K Elevation Derivative Database.
[35] Wildlife Conservation (WCS), Center for International Earth Science Information Network (CIESIN) (2005) Last of the Wild Data Version 2, 2005(LTW-2): Global Human Footprint Dataset (Geographic). . (accessed on 2010-11-28
[36] Wu JG (2015) Detecting and attributing the effect of climate change on the changes in the distribution of Qinghai-Tibet Plateau large mammal species over the past 50 years. Mammal Research, 60, 353-364.
[37] Wu JY, Wang W (1999)The White-lipped Deer of China. China Forestry Publishing House, Beijing. (in Chinese with English abstract)
[吴家炎, 王伟 (1999) 中国白唇鹿. 中国林业出版社, 北京.]
[38] Wu QM, Wang L, Zhu RP, Yang YB, Jin HY, Zou HF (2016) Nesting habitat suitability analysis of red-crowned crane in Zhalong Nature Reserve based on MAXENT modeling. Acta Ecologica Sinica, 36, 3758-3764. (in Chinese with English abstract)
[吴庆明, 王磊, 朱瑞萍, 杨宇博, 金洪阳, 邹红菲 (2016) 基于MAXENT模型的丹顶鹤营巢生境适宜性分析——以扎龙保护区为例. 生态学报, 36, 3758-3764.]
[39] You ZQ, Tang ZH, Yang YB, Yang LH, Shi HY, Liu H, Gan X, Zheng TC, Jiang ZG (2014) Summer habitat selection by white-lipped deer in the Chaqingsongduo White-lipped Deer National Nature Reserve. Acta Theriologica Sinica, 34, 46-53. (in Chinese with English abstract)
[游章强, 唐中海, 杨远斌, 杨丽红, 石红艳, 刘昊, 甘潇, 郑天才, 蒋志刚 (2014) 察青松多白唇鹿国家级自然保护区白唇鹿对夏季生境的选择. 兽类学报, 34, 46-53.]
[40] Yu D, Chen M, Zhou ZC, Eric R, Tang QG, Liu HZ (2013) Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia, 700, 23-32.
[41] Zhang RZ (1997) Distribution of Mammalian Species in China. China Forestry Publishing House, Beijing. (in Chinese with English abstract)
[张荣祖 (1997) 中国哺乳动物分布. 中国林业出版社, 北京.]
[1] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[2] Fan Jingyu, Li Hanpeng, Yang Zhuo, Zhu Gengping. Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China [J]. Biodiv Sci, 2019, 27(2): 140-148.
[3] Hongfei Zhuang,Yinbo Zhang,Wei Wang,Yueheng Ren,Fangzheng Liu,Jinhong Du,Yue Zhou. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case [J]. Biodiv Sci, 2018, 26(9): 931-940.
[4] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
[5] Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California [J]. Biodiv Sci, 2018, 26(8): 878-891.
[6] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 138-148.
[7] Zhigang Jiang,Lili Li,Yiming Hu,Huijian Hu,Chunwang Li,Xiaoge Ping,Zhenhua Luo. Diversity and endemism of ungulates on the Qinghai-Tibetan Plateau: Evolution and conservation [J]. Biodiv Sci, 2018, 26(2): 158-170.
[8] Huijie Qiao,Xiaoyi Wang,Wei Wang,Zhenhua Luo,Ke Tang,Yan Huang,Shengnan Yang,Weiwei Cao,Xinquan Zhao,Jianping Jiang,Junhua Hu. From nature reserve to national park system pilot: Changes of environmental coverage in the Three-River-Source National Park and implications for amphibian and reptile conservation [J]. Biodiv Sci, 2018, 26(2): 202-209.
[9] Meixiang He,Lixin Chen,Gai Luo,Xiaodong Gu,Ge Wang,Jianghong Ran. Suitable habitat prediction and overlap analysis of two sympatric species, giant panda (Ailuropoda melanoleuca) and Asiatic black bear (Ursus thibetanus) in Liangshan Mountains [J]. Biodiv Sci, 2018, 26(11): 1180-1189.
[10] Jianmin Chu, Yifu Li, Lei Zhang, Bin Li, Mingyuan Gao, Xiaoqian Tang, Jianwei Ni, Xinqiao Xu. Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata [J]. Biodiv Sci, 2017, 25(8): 799-806.
[11] Lingxiao Ying,Ye Liu,Shaotian Chen,Zehao Shen. Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy (Maxent) model [J]. Biodiv Sci, 2016, 24(4): 453-461.
[12] Yao LI, Xing-Wang ZHANG, Yan-Ming FANG. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum [J]. Chin J Plan Ecolo, 2016, 40(11): 1164-1178.
[13] Xiangyan Cui,Wenjuan Wang,Xiaoqiang Yang,Shu Li,Shengyuan Qin,Jun Rong. Potential distribution of wild Camellia oleifera based on ecological niche modeling [J]. Biodiv Sci, 2016, 24(10): 1117-1128.
[14] Gengping Zhu,Huijie Qiao. Effect of the Maxent model’s complexity on the prediction of species potential distributions [J]. Biodiv Sci, 2016, 24(10): 1189-1196.
[15] GUO Yan-Long, WEI Hai-Yan, LU Chun-Yan, ZHANG Hai-Long, and GU Wei. Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change [J]. Chin J Plan Ecolo, 2014, 38(3): 249-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[2] QI Xin, CAO Kun-Fang, FENG Yu-Long. Photosynthetic Acclimation to Different Growth Light Environments in Seedlings of Three Tropical Rainforest Syzygium Species[J]. Chin J Plan Ecolo, 2004, 28(1): 31 -38 .
[3] Z. Y. Yuan, X. R. Shi, F. Jiaoand F. P. Han. Changes in fine root biomass of Picea abies forests: predicting the potential impacts of climate change[J]. J Plant Ecol, 2018, 11(4): 595 -603 .
[4] WANG Feng-Ying-, HU Yong-Hong-, TIAN Qi. Study on Coldresistance of Island Plant Cinnamomum japonicum (Lauraceae)[J]. Plant Diversity, 2010, 32(S17): 97 .
[5] Rang-Jin XIE, Zhi-Qin ZHOU, Lie DENG. Taxonomic and phylogenetic relationships among the genera of the True Citrus Fruit Trees Group (Aurantioideae, Rutaceae) based on AFLP markers[J]. J Syst Evol, 2008, 46(5): 682 -691 .
[6] TIAN Han-Qin, WAN Shi-Qiang, MA Ke-Ping. [J]. Chin J Plan Ecolo, 2007, 31(2): 173 -174 .
[7] YANG Yu-Sheng, QIU Ren-Hui, YU Xin-Tuo, Huang Bao-Long, . Study on soil microbes and biochemical activity in the continuous plantations of Cunninghamia lanceolata[J]. Biodiv Sci, 1999, 07(1): 1 -7 .
[8] Cheng Xue, Fang-Dong Geng, Xiao-Yan Zhang, Xiao-Peng Chang, Ju-Qing Kang, Lei Huang, Jian-Qiang Zhang, and Yi Ren. Morphological Variation Pattern of Aquilegia ecalcarata and its Relatives[J]. J Syst Evol, 0, (): 0 .
[9] Huang Jian. [J]. Chin J Plan Ecolo, 1992, 16(3): 292 .
[10] Wang Qing-feng, Chen Jia-kuan. Floral Organogenesis of Caldesia parnassifolia (Bassi ex L.) Parl. (Alismataceae)[J]. J Syst Evol, 1997, 35(4): 289 -292 .