Biodiversity Science ›› 2016, Vol. 24 ›› Issue (11): 1220-1226.doi: 10.17520/biods.2016190

• Orginal Article • Previous Article     Next Article

Methods of observing typical plant communities in the Steppe and Desert Biodiversity Observation Network, Sino BON

Ke Guo*(), Changcheng Liu, Qingmin Pan   

  1. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2016-07-13 Accepted:2016-11-22 Online:2016-12-14
  • Guo Ke E-mail:guoke@ibcas.ac.cn

A typical plant community that reflects the basic community characteristics of a vegetation classification unit can be designated as the standard for describing a distinct vegetation type. The Steppe and Desert Biodiversity Observation Network of Sino BON aims to establish a series of typical plant community plots for long-term biodiversity observations using standardized methods. This paper emphasizes the importance of plant community observations for the study of biodiversity, defines the concept of a typical plant community, and introduces a system of typical plant community observations including the framework, primary observations, methods, parameters, and predictable output.

Key words: typical plant community, biodiversity, observation network, observation framework, observation approach

Table 1

Main contents, indices and methods of observing typical plant communities"

监测内容
Contents
监测指标
Indices
监测方法
Methods
定位信息
Location
缓冲区外围四角、样地四角坐标, 调查样方具体坐标。
Geographical coordinates of the four corners of buffer zone and sampling stand, geographical coordinate of each sampling plot.
GPS定位, 缓冲区、样地、调查样方各角点的固定物理标识(如水泥桩或插入地里的钢筋标识)
Locating each sampling plot with GPS. Marking four corners of buffer zone, sampling stand and sampling plot with permanent concrete or metal stakes.
环境信息
Environmental information
地理位置、地貌类型、气候特征(辐射、降水、温度、风等各项指标)、土壤特征(剖面结构、母质特征、各层的机械组成、pH、矿物质组成、有机质含量等)、人类活动方式和强度。
Location, geomorphological type, climatic factors (radiation, precipitation, temperature, wind, etc.), soil attributes (profile and structure, parent material, soil texture, pH, mineral composition, organic matter content, etc.), human activity patterns and intensity.
GPS定位, 并记录行政隶属; 观察并对照地貌类型分类来记录地貌, 包括区域地貌结构、样方所在位置地貌特征以及样方内可能存在的微地貌特征; 气候指标专设气象站或借用附近气象站观测数据; 土壤特征用实际观测记录和采样室内分析的方法; 人类活动信息主要通过观察和走访获取。
Recording GPS coordinates and affiliations of sampling stands. Recording geomorphological attributes, including regional geomorphological structure, geomorphological characteristics of stands and its variations within plots. Collecting climatic data by setting up meteorological stations or from nearby stations. Obtaining soil properties by field observation and sampling and chemical analyses in the laboratory. Collecting human activity information by visiting and investigations.
群落特征
Community characteristics
物种组成、群落结构、结实状况和生物量等。(1)灌木层种类、高度、基径、种群数量、盖度、株丛空间分布格局、以及生长量等; 草本层种类、高度、种群数量和盖度、株丛分布格局、生物量等; (2)水平分布格局、垂直结构、种群结构、更新状况等; (3)根系分布特征: 地上、地下生物量分布特征; (4)群落受干扰程度; (5)地表枯落物数量、覆盖度、积累过程等。
Species composition, community structure, flowering and fruiting characteristics, and biomass. (1) Height, basal diameter (BD), population density, coverage, spatial distribution pattern, and biomass increment for each species in shrub layer. Height, population density, coverage, spatial distribution pattern and biomass for each species in herb layer. (2) Horizontal distribution pattern, vertical structure, population structure, regeneration status, etc. (3) Distribution patterns of root system, allocations of aboveground and underground biomass. (4) Disturbance intensity and frequency.(5) Litter mass, coverage, distribution pattern and accumulation process on the community floor.
传统的植物群落学调查方法; 实地测量、计数统计、采样室内鉴定和分析等; 照相记录外貌特征和水平结构、垂直结构, 也可采用绘图的方式记录; 观察记录盖度、成层性、各层分盖度等, 也可以通过计算叶面积指数等来转换; 灌木层的分盖度和成层性, 灌木各株丛的平均地径、高度、冠幅、各物种的分盖度等; 草本层的成层性, 各草本植物物种营养体平均高度、生殖枝平均高度、分盖度、株丛数或多度, 以及草本植物的物候状况等。对于草原和草甸等类型, 还要测定其地上生物量等指标; 生物量采用收获、烘干、称重来得到, 可进一步根据分层收获方式获取生物量垂直分布和地上/地下生物量关系; 观察干扰相关现象记录群落干扰状况, 如火烧、鼠洞等; 地表枯落物观测和收集, 采样、分析其组成状况等。
Using standard methods of field recording and data analysis. Photographing or drawing the physiognomy and structures of a community. Recording the coverage and stratification of community and coverage of each stratum, which could also be calculated from leaf area index (LAI). Recording the stratification of shrub layer, the mean BD, height, crown breadth of each shrub individuals, and the coverage of each shrub species. Recording the stratification of herb layer, the mean heights of vegetative and reproductive branches, coverage, abundance and phenological stage for each herbaceous species. For steppe and meadow types, aboveground biomass of community should be harvested and measured by stratum, and then the total aboveground biomass, vertical allocations and the ratio of above/underground biomass could be calculated. Recording disturbance intensity and frequency (e.g. fire, mouse hole). Measuring the thickness and coverage of litter on the community floor, collecting and analyzing litter component (e.g. species and organ compositions).
群落影像
Community pictures and images
(1)群落环境特征影像: 地貌、土壤表面、土壤剖面、分层的特征等; (2)植被特征影像: 区域植被特征(宏观方面)、样地植被(样地尺度)、样方内植被(群落结构: 水平、垂直等); 主要物种的影像。
(1) Pictures and images of environments: geomorphology, soil surface, soil profile, characteristics of each soil layer. (2) Pictures and images of vegetation at regional and stand scales, of community structure (horizontal and vertical structure), and of major plant species at plot scale.
照相或者录像; 有条件的情况下, 用高密度激光雷达数据来记录群落特征, 或者采用全息照相技术等。群落特征要有由上向下反映水平结构的照片, 有侧面反映群落垂直结构的照片; 植物物种最好能有特写的一组照片, 如关于根、茎、叶、花、果、实等, 同时可以反映物候特征。
Taking photos and/or videos. Recording community characteristics using lidar or holographic techniques if possible.
For a community, photos reflecting the horizontal and vertical structures should be included. For a plant species within the community, close-up photos of organs (e.g., root, stem, leaf, flower, fruit and seed) and phenological characteristics should be included.
植物和土壤
标本
Plant and soil specimens
(1)群落中所有物种的2份标本; (2)土壤标本剖面的标本。
(1) Plant specimens of each species in sampling communities (two sets). (2) Soil specimens of standard soil profile.
调查的同时采样, 也可以在植物分类鉴定特征更明显的合适时候采样。土壤标本可以用分层的方式, 也可以直接采一个剖面(如50 cm或100 cm 以上)
Collecting plant specimens during vegetation survey or when the plants grow into the best stage to be identified easily. Soil specimens could be collected by stratified sampling or sampling a whole soil profile (e.g. > 50 cm or 100 cm).
1 Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Salim KA, Zambrano AMA, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng X, Detto M, Du X, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao Z, Hargrove WW, Hart TB, Hau BCH, He F, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang M, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li Y, Li X, Liu S, Lum SKY, Lutz JA, Ma K, Maddalena DM, Makana J-R, Malhi Y, Marthews T, Serudin RM, McMahon SM, McShea WJ, Memiaghe HR, Mi X, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang W, Sri-Ngernyuang K, Sukumar R, Sun I-F, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrška T, Wang X, Wang X, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology, 21, 528-549.
2 Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51-57.
3 Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
4 Chen LZ, Sun H, Guo K (2014)Floristic and Vegetation Geography of China. Science Press, Beijing. (in Chinese)
[陈灵芝, 孙航, 郭柯 (2014)中国植物区系与植被地理 . 科学出版社, 北京.]
5 Faber-Langendoen D, Keeler-Wolf T, Meidinger D, Tart D, Hoagland B, Josse C, Navarro G, Ponomarenko S, Saucier J, Weakley A, Comer P (2014) EcoVeg: a new approach to vegetation description and classification. Ecological Monographs, 84, 533-561.
6 Ma KP (2011) Assessing progress of biodiversity conservation with monitoring approach. Biodiversity Science, 19, 125-126. (in Chinese)
[马克平 (2011) 监测是评估生物多样性保护进展的有效途径. 生物多样性, 19, 125-126.]
7 Ma KP (2015) Biodiversity monitoring in China: from CForBio to Sino BON. Biodiversity Science, 23, 1-2. (in Chinese)
[马克平 (2015) 中国生物多样性监测网络建设: 从CForBio到Sino BON. 生物多样性, 23, 1-2.]
8 Song YC (2001) Vegetation Ecology.East China Normal University Press, Shanghai. (in Chinese)
[宋永昌 (2001) 植被生态学. 华东师范大学出版社, 上海.]
9 Song YC (2011) Recognition and proposal on the vegetation classification system of China. Chinese Journal of Plant Ecology, 35, 882-892. (in Chinese)
[宋永昌 (2011) 对中国植被分类系统的认知和建议. 植物生态学报, 35, 882-892.]
10 The Editorial Committee of Vegetation of China(1980)Vegetation of China. Science Press, Beijing.
(in Chinese) [中国植被编辑委员会(1980)中国植被. 科学出版社, 北京.]
11 Xue DY (2011) The main content and implementation strategy for China Biodiversity Conservation Strategy and Action Plan. Biodiversity Science, 19, 387-388. (in Chinese)
[薛达元 (2011)《中国生物多样性保护战略与行动计划》的核心内容与实施战略.生物多样性, 19, 387-388.]
[1] Wenying Zhuang Yi Li Huandi Zheng Zhaoqing Zeng Xincun Wang. (2020) Threat status of macro-ascomycetes in China and analysis of its threatening factors . Biodiv Sci, 28(1): 0-0.
[2] Yi Li Zhiyao Tang Yujing Yan Ke Wang Lei Cai Jinsheng He Song Gu Yijian Yao. (2020) Incorporating species distribution modelling into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 0-0.
[3] Shun Li, Liang Zou, Yinan Gong, Haitao Yang, Tianming Wang, Limin Feng, Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[4] Rui Yang, Qinyi Peng, Yue Cao, Le Zhong, Shuyu Hou, Zhicong Zhao, Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[5] Yongmin Li, Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[6] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[7] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
[8] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. (2019) Spring and autumn shrimp and crab biodiversity in the east Nanji Islands . Biodiv Sci, 27(7): 787-795.
[9] Ding Lubin, Ma Nan, Wang Guoping, He Siyuan, Min Qingwen. (2019) Visual analysis of hotspots and emerging trends in traditional knowledge associated with biodiversity . Biodiv Sci, 27(7): 716-727.
[10] Kong Jiaxin, Zhang Zhaochen, Zhang Jian. (2019) Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect . Biodiv Sci, 27(7): 796-812.
[11] Zhang Yuanyuan. (2019) China’s strategy for incorporating traditional knowledge associated with biodiversity into international multi-lateral agreements . Biodiv Sci, 27(7): 708-715.
[12] Cao Ning, Xue Dayuan. (2019) On biodiversity conservation by Zhuang traditional culture: A case study in Jingxi City of Guangxi Zhuang Autonomous Region . Biodiv Sci, 27(7): 728-734.
[13] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. (2019) Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system . Biodiv Sci, 27(6): 648-657.
[14] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. (2019) Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing . Biodiv Sci, 27(6): 607-618.
[15] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. (2019) Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China . Biodiv Sci, 27(6): 619-629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed