生物多样性 ›› 2019, Vol. 27 ›› Issue (4): 355-365.doi: 10.17520/biods.2019016

• 研究报告 • 上一篇    下一篇

滇杨种群遗传多样性与遗传结构

张亚红1, 贾会霞1, 王志彬2, 孙佩1, 曹德美1, 胡建军1, *()   

  1. 1 林木遗传育种国家重点实验室, 国家林业和草原局林木培育重点实验室, 中国林业科学研究院林业研究所, 北京 100091
    2 张家口市金沙滩林场, 河北怀安 076150
  • 收稿日期:2019-01-21 接受日期:2019-04-18 出版日期:2019-04-20
  • 通讯作者: 胡建军 E-mail:hujj@caf.ac.cn
  • 基金项目:
    中央级公益性科研院所基本科研业务费专项资金(CAFYBB2017ZY008)

Genetic diversity and population structure of Populus yunnanensis

Zhang Yahong1, Jia Huixia1, Wang Zhibin2, Sun Pei1, Cao Demei1, Hu Jianjun1, *()   

  1. 1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091
    2 Zhangjiakou Jinshatan Forest Farm, Huaian, Hebei 076150
  • Received:2019-01-21 Accepted:2019-04-18 Online:2019-04-20
  • Contact: Hu Jianjun E-mail:hujj@caf.ac.cn

滇杨(Populus yunnanensis)是我国西南地区的特有树种, 具有速生、易无性繁殖、适应性强等优良特性, 是典型的南方型杨属树种。研究滇杨遗传多样性及种群结构对其种质资源的收集、保存和利用具有重要的意义。本研究从我国滇杨主要分布区云南和四川共采集了6个种群, 包括云南的昭通(ZT)、会泽(HZ)、嵩明(SM)、洱源(EY)、拉市海(LS)以及四川的美姑(MG), 共64个个体, 利用34对SSR分子标记和3对cpDNA叶绿体标记开展遗传多样性与遗传结构研究。SSR引物共检测到154个等位基因, 平均等位基因数为4.529, 观测杂合度(Ho)与期望杂合度(He)分别为0.552和0.472, 遗传分化系数(Fst)平均值为0.238, 多态性信息含量指数(PIC)平均值为0.421, 基因流(Nm)为0.806。滇杨的遗传结构分析(DAPC)与遗传距离的主坐标分析(PCoA)、UPGMA聚类分析均将6个种群划分为3个亚类: 第?亚类包括昭通种群、会泽种群和嵩明种群的4个个体, 第??亚类包括嵩明种群的6个个体以及洱源种群和拉市海种群, 第III亚类为美姑种群; 嵩明种群包含第?和第??两个亚类的混合遗传成分。3个cpDNA联合序列中共检测到35个变异位点, 分为13个单倍型, 其中单倍型H5在种群中分布最为广泛, 其余的单倍型均为种群特有的单倍型。分子方差分析(AMOVA)表明种群内的遗传变异大于种群间变异。研究表明滇杨不同种群的遗传分化具有地域性, 可选择就地保护; 昭通种群遗传多样性最高, 且包含7种叶绿体单倍型, 单倍型类型最多, 应优先保护。

关键词: 滇杨, 遗传多样性, 遗传结构, 分子标记, SSR, cpDNA

Populus yunnanensis is an endemic tree species to Southwestern China. It is a typical southern Populus species that is fast-growing species with easy to clone propagules and is highly adaptable. It is important to research the genetic diversity and population structure of P. yunnanensis for the collection, preservation and utilization of the germplasm resources. In this study, 64 individuals were collected from six populations, spaning the main distribution areas of P. yunnanensis, including Zhaotong (ZT), Huize (HZ), Songming (SM), Eryuan (EY), Lashihai (LS) and Sichuan Meigu (MG). A total of 34 pairs of SSR primers and three pairs of cpDNA primers were used to determine out the genetic diversity and genetic structure. A total of 154 alleles were detected by SSR primers in P. yunnanensis. The average number of alleles was 4.529. The observed heterozygosity (Ho) and expected heterozygosity (He) were 0.552 and 0.472, respectively. And the average genetic differentiation coefficient (Fst) was 0.238. The average polymorphism information content (PIC) was 0.421 and the gene flow (Nm) was 0.806. The results of the DAPC, PCoA and UPGMA analyses showed that the six populations can be divided into three sub-categories: Group І included ZT, HZ and four individuals of SM. Group II included EY, LS and the six remaining individuals of SM; and group III included MG; SM population include mixed genetic components from І and ІІ. A total of 35 variable sites were detected in the three cpDNA combinations, forming 13 haplotypes. Among them, haplotype H5 was the most widely distributed in the population, while the remaining ones were of private haplotypes. Analysis of molecular variance (AMOVA) showed that genetic variation within the population was greater than between populations. The study clarifies that P. yunnanensis has geographical distribution characteristics and is suited to in situ conservation. As ZT population has the highest geneticdiversity and contains seven chloroplast haplotypes, it should be given protection priority.

Key words: Populus yunnanensis, genetic diversity, genetic structure, molecular marker, SSR, cpDNA

表1

滇杨各种群采样地地理信息及采样数"

种群 Population 代号 Code 样本量 Sample size 纬度 Latitude 经度 Longitude 海拔 Altitude (m)
昭通 Zhaotong ZT 12 27°33°52″-27°38°29″ N 103°45°05″-103°46°43″ E 1,802-1,914
会泽 Huize HZ 12 26°12°07″-26°23°42″ N 103°15°19″-103°24°09″ E 2,118-2,303
嵩明 Songming SM 10 25°12°07″-25°17°42″ N 103°02°42″-103°03°43″ E 1,900-1,930
洱源 Eryuan EY 12 26°05°56″-26°08°17″ N 99°58°13″-100°00°08″ E 2,056-2,060
拉市海 Lashihai LS 12 26°51°03″-27°00°28″ N 100°08°58″-100°15°24″ E 2,418-2,657
美姑 Meigu MG 6 28°19°40″-28°20°09″ N 103°08°22″-103°08°44″ E 1,944-2,027

表2

用于滇杨SSR扩增的引物序列及扩增结果"

表3

用于滇杨PCR扩增的3个cpDNA引物序列信息"

名称 Name 区域 Primer area 正向序列 Forward primer sequence (5’-3’) 反向序列 Reverse primer sequence (5’-3’)
CO2 trnK AGATGGAAAAAAGAGAGGATAGAGG CAAATAATATCCAAATACCAAACCC
CO5 rpoC1 CGAATGGAAGACATAGACAAGT AAGTGACCTTCGGGAGCTTCTC
CO9 atpF TTGAAGTCCAGACAGAGCAGGTTAC GGTCAAACAACTATTCAAAGTCCCT

表4

基于SSR和cpDNA所得的滇杨遗传多样性信息表。种群代号同表1。"

种群
Popula-tion
等位基因Number of alleles (Na) 有效等位
基因
Number of effective alleles (Ne)
观测杂合度Observed heterozygosity (Ho) 期望杂合度Expected heterozygosity (He) Shannon’s
信息指数Shannon’s information content (I)
近交系数Inbreeding coefficient (F) 单倍型多态性
Haplotype diversity (h)
核苷酸
多样性Nucleotide diversity (π)
单倍型组成(个体数)
Haplotype composition
(No. of individuals)
ZT 2.000 1.695 0.537 0.345 0.514 -0.439 0.864 0.00055 H1(3); H2(1); H3(1); H4(1);
H5(4); H6(1); H7(1)
HZ 2.000 1.759 0.522 0.345 0.528 -0.432 - - H5(12)
SM 2.265 1.806 0.532 0.368 0.585 -0.313 - - H5(10)
EY 2.559 1.904 0.520 0.385 0.639 -0.190 0.455 0.00013 H5(9); H10(1); H11(1); H12(1)
LS 2.441 1.862 0.559 0.390 0.627 -0.260 0.378 0.00025 H5(10); H8(1); H9(1)
MG 1.794 1.623 0.495 0.324 0.473 -0.454 0.333 0.00017 H5(5); H13(1)
平均Mean 2.177 1.775 0.528 0.360 0.561 -0.341 0.402 0.00020

图1

基于DAPC的滇杨个体分布图(K = 2, 3, 4, 5, 6)。种群代号同表1。"

图2

滇杨主坐标分析图及聚类图。(A)个体主坐标分析(PCoA); (B)依据SSR标记基于遗传距离的UPGMA聚类分析, 百分比表示1,000次bootstrap值的比例。种群代号同表1。"

表5

基于SSR和cpDNA对种群内和种群间分子变异的方差分析"

变异来源
Source of
variation
自由度
df
变异值
Estimated variance of components
变异来源占比
Percentage of variation (%)
遗传分化系数
Genetic differentiation coefficient (Fst)
基因流
Gene flow (Nm)
SSR cpDNA SSR cpDNA SSR cpDNA
种群间
Among population
5 1.966 9.663 18 15
种群内
Within populations
59 9.016 39.047 82 85
总计 Total 64 10.982 48.710 100 100 0.237 0.148 0.806

表6

种群间遗传分化系数(Fst, 对角线上方)和基因流(Nm, 对角线下方)。种群代号同表1。"

ZT HZ SM EY LS MG
ZT - 0.081 0.182 0.227 0.266 0.434
HZ 2.837 - 0.171 0.217 0.228 0.424
SM 1.124 1.214 - 0.174 0.124 0.409
EY 0.849 0.904 1.186 - 0.101 0.340
LS 0.689 0.844 1.763 2.216 - 0.372
MG 0.327 0.339 0.362 0.486 0.422 -

表7

滇杨叶绿体片段13个单倍型间的序列变异位点表"

单倍型 Hap-
lotype
变异位点 Mutation sites
CO2 CO5 CO9
1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3
6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 0 0 1 3 4 5 5 6 6 6 6 6 6 1 3 3 3 4 7
6 9 4 6 6 7 8 8 9 0 0 0 0 1 4 9 0 2 9 3 3 7 8 6 6 6 7 8 8 2 0 3 8 2 7
3 3 2 4 6 1 3 7 7 1 2 3 8 0 3 5 2 7 8 4 2 0 5 0 1 3 4 4 9 3 1 5 1 3 2
H1 - - - G A - - - A A - C - G - G C - C A C T - C T A C C C - - T G G -
H2 . . . . . . . . . . . G . . . . . . . . . C . . . . . . . . . . . . .
H3 . . . . . . . . . C . G . . . . . . . . . C . . . . . . . . . . . . .
H4 . . . A G A T A . . . G . A T . . . . . - . . . . . . . . . . . . . .
H5 . . . . . . . . . . . G . . . . . . . . . C G . . . . . . . . . . . .
H6 . . T . . . . . T . . G T . . . . . . . . . . . . . . . . . . . A . .
H7 . T . . . . . . . . . G . . . . T . T . T . G . . . . . . A . . . . .
H8 . . . . . . T C T . . G . . . . . C . . T C . . . . . . . . . . . . .
H9 . . . . . . . . . . . G . . . A . . . . . C . . . . . . . . T G . . .
H10 . . . . . . . . . . . G . . . . . . . . . C . . . . . A - . . . . . .
H11 . . . . . . . . . . A G . . . . . . . . . C . . . . . . . . . . . A .
H12 G . . - G A . . . . . G . . . . . . . . . C . . . . . . . . . . . . .
H13 . . . . . . . . . . . G . . . . . . . . . C . - - T - A - . . . . . A

图3

滇杨基于cpDNA的单倍型网络图。(A)单倍型地理分布图, 圆大小代表种群个体数多少, 饼状图为各单倍型占比; (B)中央网络连接图; (C)最大简约法树(MP), 百分比表示1,000次bootstrap值的比例, 小于50%的不予显示。种群代号同表1。"

[1] Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson WF ( 2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320-2325.
[2] Bai WN, Zhang DY ( 2014) Current status and future directions in plant phylogeography. Chinese Bulletin of Life Sciences, 26, 125-137. (in Chinese with English abstract)
[ 白伟宁, 张大勇 ( 2014) 植物亲缘地理学的研究现状与发展趋势. 生命科学, 26, 125-137.]
[3] Bandelt HJ, Forster P, Röhl A ( 1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
doi: 10.1093/oxfordjournals.molbev.a026036
[4] Burland TG ( 2000) DNASTAR’s Lasergene sequence analysis software. Methods in Molecular Biology, 132, 71-91.
doi: 10.1385/1-59259-192-2:71 pmid: 10547832
[5] Chen K ( 2007) Genetic Relationships among Poplar Species in Section Tacamahaca Spach from Western Sichuan of China. PhD dissertation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu. (in Chinese with English abstract)
[ 陈珂 ( 2007) 川西青杨组(Section Tacamahaca Spach)不同种的亲缘关系分析. 博士学位论文, 中国科学院成都生物研究所, 成都.]
[6] Chen XM, He ZH, Shi JR, Xia LQ, Rick W, Zhou Y, Jiang GL ( 2003) Genetic diversity of high quality winter wheat varieties (lines) based on SSR markers. Acta Agronomica Sinica, 29, 13-19. (in Chinese with English abstract)
[ 陈新民, 何中虎, 史建荣, 夏兰芹, Ward Rick, 周阳, 蒋国梁 ( 2003) 利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究. 作物学报, 29, 13-19.]
[7] Chen XY ( 2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecologica Sinica, 20, 884-892. (in Chinese with English abstract)
[ 陈小勇 ( 2000) 生境片断化对植物种群遗传结构的影响及植物遗传多样性保护. 生态学报, 20, 884-892.]
[8] Crandall KA, Templeton AR ( 1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134, 959-969.
[9] DiFazio S, Slavov G, Rodgers-Melnick E, Martin J, Schackwitz W, Priya R, Tuskan G ( 2011) Inferring the evolutionary history of Populus trichocarpa from whole genome resequencing data. BMC Proceedings, 5, O1.
[10] Du QZ, Wang B, Wei ZZ, Zhang DQ, Li BL ( 2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. Journal of Heredity, 103, 853-862.
doi: 10.1093/jhered/ess061
[11] Ferradini N, Lancioni H, Torricelli R, Russi L, Ragione ID, Cardinali I, Marconi G, Gramaccia M, Concezzi L, Achilli A, Veronesi F, Albertini E ( 2017) Characterization and phylogenetic analysis of ancient Italian landraces of pear. Frontiers in Plant Science, 8, 751.
doi: 10.3389/fpls.2017.00751
[12] Golding GB ( 1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genetics Research, 49, 71-82.
doi: 10.1017/S0016672300026768
[13] Gong GT ( 2004) The geographic distribution and origin of Populus L. Journal of Sichuan Forestry Science and Technology, 25(2), 25-30. (in Chinese with English abstract)
[ 龚固堂 ( 2004) 杨属地理分布与起源初探. 四川林业科技, 25(2), 25-30.]
[14] Hamrick JL, Godt MJW, Sherman-Broyles SL ( 1992) Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95-124.
doi: 10.1007/BF00120641
[15] He CZ, Che PY, Peng CY, Zhou XT, Duan AA, Wang DX, Xin PY ( 2010) A survey of research progress on gene resources of Populus yunnanensis. Journal of Southwest Forestry University, 30(1), 83-88. (in Chinese with English abstract)
[ 何承忠, 车鹏燕, 周修涛, 段安安, 王德新, 辛培尧 ( 2010) 滇杨基因资源及其研究概况. 西南林业大学学报, 30(1), 83-88.]
[16] He CZ, Zhang ZY, Duan AA, Feng XL ( 2009) Genetic Diversity Analysis of Populus yunnanensis by AFLP Markers. China Forestry Publishing House, Beijing. (in Chinese)
[ 何承忠, 张志毅, 段安安, 冯夏莲 ( 2009) 滇杨基因资源遗传多样性的AFLP分析. 中国林业出版社, 北京.]
[17] Jia HX, Ji HJ, Hu JJ, Lu MZ ( 2015) Fingerprints of SSR markers and ploidy detection for new Populus varieties. Scientia Silvae Sinicae, 51(2), 69-79. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20150209
[ 贾会霞, 姬慧娟, 胡建军, 卢孟柱 ( 2015) 杨树新品种的SSR指纹图谱构建和倍性检测. 林业科学, 51(2), 69-79.]
doi: 10.11707/j.1001-7488.20150209
[18] Jiang DC, Wu GL, Mao KS, Feng JJ ( 2015) Structure of genetic diversity in marginal populations of black poplar (Populus nigra L.). Biochemical Systematics and Ecology, 61, 297-302.
doi: 10.1016/j.bse.2015.06.014
[19] Jombart T, Devillard S, Balloux F ( 2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.
[20] Kumar S, Stecher G, Tamura K ( 2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
doi: 10.1093/molbev/msw054
[21] Peakall R, Smouse PE ( 2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
doi: 10.1111/men.2006.6.issue-1
[22] Peng YH ( 2006) Population Genetic Survey of Populus cathayana Rehd. Originating from eastern edge of Qinghai-Tibetan Plateau of China. PhD dissertation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu. (in Chinese with English abstract)
[ 彭幼红 ( 2006) 青藏高原东缘青杨(Populus cathayana Rehd.)遗传多样性研究. 博士学位论文, 中国科学院研究生院成都生物研究所, 成都.]
[23] Polzin T, Daneshmand SV ( 2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31, 12-20.
doi: 10.1016/S0167-6377(02)00185-2
[24] Posada D, Crandall KA ( 2001) Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16 , 37-45.
[25] Qiu YX, Fu CX, Comes HP ( 2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
doi: 10.1016/j.ympev.2011.01.012
[26] Retief JD ( 1999) Phylogenetic analysis using PHYLIP. Methods in Molecular Biology, 132, 243-258.
[27] Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK ( 2004) AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochemical Genetics, 42, 43-59.
doi: 10.1023/B:BIGI.0000012143.48298.71
[28] Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R ( 2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496-2497.
doi: 10.1093/bioinformatics/btg359
[29] Schuelke M ( 2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234.
[30] Semerikova SA, Semerikov VL ( 2014) Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Genetika, 50, 12-25.
[31] Shang ZH, Yao AX ( 2002) Biological genetic diversity research methods and their protective measures. Journal of Ningxia Agricultural College, 23(1), 66-69. (in Chinese)
[ 尚占环, 姚爱兴 ( 2002) 生物遗传多样性研究方法及其保护措施. 宁夏农学院学报, 23(1), 66-69.]
[32] Shen XF, Wu ML, Liao BS, Liu ZX, Bai R, Xiao SM, Li XW, Zhang BL, Xu J, Chen SL ( 2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules, 22, 1330.
doi: 10.3390/molecules22081330
[33] Tippmann HF ( 2004) Analysis for free: Comparing programs for sequence analysis. Briefings in Bioinformatics, 5, 82-87.
doi: 10.1093/bib/5.1.82
[34] Wan XQ, Zhang F, Zhong Y, Wang CL, Ding YH, Hu TX, Zhai MP, Qian ZL ( 2009) Conservation and application of the genetic resource of native poplars in Southwest China. Scientia Silvae Sinicae, 45(4), 139-144. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20090423
[ 万雪琴, 张帆, 钟宇, 王长亮, 丁云海, 胡庭兴, 翟明普, 钱宗亮 ( 2009) 中国西南地区乡土杨树基因资源的保护与利用. 林业科学, 45(4), 139-144.]
doi: 10.11707/j.1001-7488.20090423
[35] Wang J, Li ZJ, Guo QH, Ren GP, Wu YX ( 2011) Genetic variation within and between populations of a desert poplar (Populus euphratica) revealed by SSR markers. Annals of Forest Science, 68, 1143-1149.
doi: 10.1007/s13595-011-0119-6
[36] Wang JL, Gao QB, Fu PC, Gulzar K, Chen SL, Zhang FQ ( 2014) Phylogeography of Spiraea mongolica (Rosaceae) on the Qinghai-Tibetan Plateau and adjacent highlands. Acta Botanica Boreali-Occidentalia Sinica, 10, 1981-1991. (in Chinese with English abstract)
[ 王久利, 高庆波, 付鹏程, Gulzar K, 陈世龙, 张发起 ( 2014) 青藏高原及其毗邻山区蒙古绣线菊谱系地理学研究. 西北植物学报, 34, 1981-1991.]
[37] Xu WY ( 1988) Poplar. Heilongjiang People’s Publishing House. Harbin. (in Chinese)
[ 徐纬英 ( 1988) 杨树. 黑龙江人民出版社, 哈尔滨.]
[38] Yan LQ, Li JM, Yuan T, Zhou AP, Zong D, Li D, Xin PY, He CZ ( 2016) Genetic diversity analysis of Populus yunnanensis by SRAP markers. Biotechnology Bulletin, 32, 159-167. (in Chinese with English abstract)
[ 颜璐茜, 李佳蔓, 员涛, 周安佩, 纵丹, 李旦, 辛培尧, 何承忠 ( 2016) 滇杨遗传多样性的SRAP分析. 生物技术通报, 32, 159-167.]
[39] Yu SQ, Liu J, Fu DR, Liu DJ, Liu YQ ( 2003) Characteristics of Tacamahaca genes in the Western Sichuan Plateau. Journal of Zhejiang Forestry College, 20, 27-31. (in Chinese with English abstract)
[ 余树全, 刘军, 付达荣, 刘大健, 刘友全 ( 2003) 川西高原青杨派基因资源特点. 浙江林学院学报, 20(1), 27-31.]
[40] Závada T, Malik RJ, Kesseli RV ( 2017) Population structure in chicory (Cichorium intybus): A successful U. S. weed since the American revolutionary war. Ecology and Evolution, 7, 4209-4219.
doi: 10.1002/ece3.2017.7.issue-12
[41] Zeng YF, Zhang JG, Abuduhamiti B, Wang WT, Jia ZQ ( 2018) Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evolutionary Biology, 18, 75.
doi: 10.1186/s12862-018-1194-1
[42] Zhao N, Liu J ( 1994) Taxonomic studies on Populus L. in Southwestern China (II). Journal of Wuhan Botanical Research, 9, 225-232. (in Chinese with English abstract)
[ 赵能, 刘军 ( 1994) 中国西南地区杨属的分类学研究(II). 武汉植物科学学报, 9, 225-232.]
[43] Zheng HL, Fan LQ, Milne RI, Zhang L, Wang YL, Mao KS ( 2017) Species delimitation and lineage separation history of a species complex of aspens in China. Frontiers in Plant Science, 8, 375.
[44] Zong D, Yuan T, Zhou AP, Liu DY, Zheng Y, Duan AA, He CZ ( 2014) Analysis of genetic background of 52 Populus yunnanensis superior trees by AFLP markers. Journal of Northwest Forestry University, 29, 103-108. (in Chinese with English abstract)
[ 纵丹, 员涛, 周安佩, 刘东玉, 郑元, 段安安, 何承忠 ( 2014) 滇杨优树遗传多样性的AFLP分析. 西北林学院学报, 29, 103-108.]
[1] 何杰丽 石甜甜 陈凌 王海岗 乔治军 王瑞云. 糜子EST-SSR的开发及种质资源遗传多样性分析[J]. 植物学报, 2019, 54(5): 0-0.
[2] 谢立峰, 李宁, 李烨, 姚明华. 茄子种质遗传多样性及群体结构的SRAP分析[J]. 植物学报, 2019, 54(1): 58-63.
[3] 陶乃奇, 张斌, 刘信凯, 周和达, 钟乃盛, 严丹峰, 张敏, 高继银, 张文驹. 利用荧光标记SSR鉴别21个茶花新品种[J]. 植物学报, 2019, 54(1): 37-45.
[4] 于少帅, 林彩丽, 王圣洁, 张文鑫, 田国忠. 植原体tuf基因与其上游部分基因结构和相关基因启动子保守区域特征及活性分析[J]. 生物多样性, 2018, 26(7): 738-748.
[5] 张文驹, 戎俊, 韦朝领, 高连明, 陈家宽. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372.
[6] 秦声远, 戎俊, 张文驹, 陈家宽. 油茶栽培历史与长江流域油茶遗传资源[J]. 生物多样性, 2018, 26(4): 384-395.
[7] 朱宇佳, 焦凯丽, 罗秀俊, 冯尚国, 王慧中. 基于SSR分子标记的酸浆属植物亲缘关系研究[J]. 植物学报, 2018, 53(3): 305-312.
[8] 任梦云, 杜乐山, 陈彦君, 张盾, 沈奇, 关潇, 张银东. 锁阳ITS序列遗传多样性分析[J]. 植物学报, 2018, 53(3): 313-321.
[9] 黄勋和, 余哲琪, 翁茁先, 何丹林, 易振华, 李威娜, 陈洁波, 张细权, 杜炳旺, 钟福生. 广东省地方鸡线粒体遗传多样性与母系起源[J]. 生物多样性, 2018, 26(3): 238-247.
[10] 武星彤, 陈璐, 王敏求, 张原, 林雪莹, 李鑫玉, 周宏, 文亚峰. 丹霞梧桐群体遗传结构及其遗传分化[J]. 生物多样性, 2018, 26(11): 1168-1179.
[11] 刘青青, 董志军. 基于线粒体COI基因分析钩手水母的群体遗传结构[J]. 生物多样性, 2018, 26(11): 1204-1211.
[12] 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989.
[13] 徐武美, 慈秀芹, 李捷. 浅析环境特征对遗传多样性与物种多样性的平行效应[J]. 生物多样性, 2017, 25(5): 481-489.
[14] 盛芳, 陈淑英, 田嘉, 李鹏, 秦雪, 罗淑萍, 李疆. 新疆准噶尔山楂不同居群的遗传多样性[J]. 生物多样性, 2017, 25(5): 518-530.
[15] 叶俊伟, 袁永革, 蔡荔, 王晓娟. 中国东北温带针阔混交林植物物种的谱系地理研究进展[J]. 生物多样性, 2017, 25(12): 1339-1349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed