生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 574-582.doi: 10.3724/SP.J.1003.2014.14116

• • 上一篇    下一篇

暖温带-北亚热带过渡带落叶阔叶林群落不同径级系统发育结构的变化

任思远1, 王婷1, *(), 祝燕2, 叶永忠1, 李聪3, 潘娜1, 叶永忠1   

  1. 1 河南农业大学, 郑州 450002
    2 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    3 河南省新郑市气象局, 河南新郑 451100
  • 收稿日期:2014-06-06 接受日期:2014-09-28 出版日期:2014-09-20
  • 通讯作者: 王婷 E-mail:tingwang01@126.com
  • 基金项目:
    国家自然科学基金(31270493)和中科院植物所植被与环境变化国家重点实验室2012年开放课题(LVEC-2012kf06)

Phylogenetic structure of individuals with different DBH sizes in a deciduous broad-leaved forest community in the temperate-subtropical ecological transition zone, China

Siyuan Ren1, Ting Wang1, *(), Yan Zhu2, Yongzhong Ye1, Zhiliang Yuan1, Cong Li3, Na Pan1, Luxin Li1   

  1. 1 Henan Agricultural University, Zhengzhou 450002
    2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    3 Xinzheng Meteorological Bureau, Xinzheng, Henan 451100
  • Received:2014-06-06 Accepted:2014-09-28 Online:2014-09-20
  • Contact: Wang Ting E-mail:tingwang01@126.com

群落的系统发育结构能够有效地反映各种生态过程对群落组成的影响, 通过研究群落系统发育结构能推断出其形成的生态过程, 对于揭示群落动态具有重要意义。作者将宝天曼1 ha落叶阔叶林样地分为10 m×10 m、20 m×20 m、25 m×25 m三个尺度的样方, 将样地内乔木个体划分为小径级(1 cm ≤ DBH<5 cm)、中径级 (5 cm ≤ DBH<10 cm)、大径级(DBH ≥ 10 cm)三个径级, 通过比较各个阶段系统发育结构的变化, 来分析其群落系统发育结构的生态过程。不同零模型的比较发现, 宝天曼落叶阔叶林群落的净系统发育亲缘关系指数(net relatedness index, NRI)和最近种间亲缘关系指数(net nearest taxa index, NTI)值都随着研究尺度和径级的增加而降低, 表明该群落在不同时空尺度上都表现出群落系统发育结构发散, 而且系统发育密度制约对大径级个体的系统发育结构的影响大于小径级个体。上述结果说明密度制约是地处暖温带-亚热带过渡带的宝天曼落叶阔叶林群落物种多样性维持的重要机制。

关键词: 落叶阔叶林, 群落系统发育结构, 密度制约, 空间尺度, 径级

Phylogenetic structure of a community could effectively reflect underlying ecological processes of a community. Understanding phylogenetic structure of a community will help reveal the ecological processes associated with community dynamics. Data in a 1-ha plot were divided into quadrats at three spatial scales (10 m×10 m, 20 m×20 m, and 25 m×25 m) and three DBH sizes (1 cm ≤ DBH<5 cm, 5 cm ≤ DBH<10 cm, DBH ≥ 10 cm) to compare phylogenetic structures and to infer ecological processes of the community in a deciduous broad-leaved forest in the Baotianman National Nature Reserve. It was shown that NRI (net relatedness index) and NTI (net nearest taxa index) decreased with increasing spatial scales and DBH sizes. These results indicated that, phylogenetic structure of this community were overdispersed at different spatial scales and DBH sizes; and phylogenetic density dependence exerted higher effect on lager DBH classes than smaller ones. Our results suggested that phylogenetic density dependence is an important mechanism in regulating species diversity and shaping community structure of the deciduous broad-leaved forest in the temperate-subtropical ecological transition zone of China.

Key words: deciduous broad-leaved forest, phylogenetic structure, density dependence, spatial scale, DBH sizes

图1

宝天曼落叶阔叶林1 ha森林样地58种木本植物的系统发育关系"

表1

宝天曼落叶阔叶林不同零模型和不同尺度下平均成对分类系统发育距离(MPD)和净相关指数(NRI)"

尺度
Scale
MPD平均随机值
Mean MPD randomization
MPD平均实际测量值
Mean MPD analysis
标准差
SD
净相关指数
NRI
零模型
Null model
10 m×10 m 178.13 262.55 43.57 -1.97 约束型 Constrained
263.58 262.55 84.12 0.03 非约束型 Unconstrained
20 m×20 m 196.36 288.74 41.59 -2.20 约束型 Constrained
286.36 288.74 71.55 -0.01 非约束型 Unconstrained
25 m×25 m 201.98 297.13 40.38 -2.27 约束型 Constrained
293.39 297.13 68.11 -0.04 非约束型 Unconstrained

表2

宝天曼落叶阔叶林不同零模型和不同尺度下平均最近系统发育距离(MNND)和最近邻体指数(NTI)"

尺度
Scale
MNND平均随机值
Mean MNND randomization
MNND平均实际测量值
Mean MNND analysis
标准差
SD
最近邻体指数
NTI
零模型
Null model
10 m×10 m 172.63 238.72 55.80 -1.110 约束型 Constrained
231.88 238.72 89.65 0.007 非约束型 Unconstrained
20 m×20 m 141.09 199.81 49.40 -1.170 约束型 Constrained
188.50 199.81 74.82 -0.024 非约束型 Unconstrained
25 m×25 m 133.57 189.81 47.05 -1.180 约束型 Constrained
179.78 189.81 69.60 -0.034 非约束型 Unconstrained

图2

不同尺度下不同零模型的宝天曼森林净相关指数(NRI)和平均最近邻体指数(NTI)。A1, A2, A3, a1, a2, a3为约束型零模型, B1, B2, B3, b1, b2, b3为非约束型零模型。"

表3

宝天曼落叶阔叶林群落系统发育结构指数与径级和尺度的关系"

尺度 Scale (m) 模型 Model χ2 df P
10 m×10 m NRI vs. DBH 30.19 2 <0.0010
NTI vs. DBH 34.50 2 <0.0010
20 m×20 m NRI vs. DBH 3.92 2 0.1409
NTI vs. DBH 14.78 2 0.0006
25 m×25 m NRI vs. DBH 7.15 2 0.0280
NTI vs. DBH 12.64 2 0.0020
径级 DBH class
A (1 cm≤DBH< 5 cm) NRI vs. scale 0.93 2 0.6384
NTI vs. scale 6.51 2 0.0386
B (5 cm≤DBH<10 cm) NRI vs. scale 3.69 2 0.1574
NTI vs. scale 0.81 2 0.6671
C (DBH≥10 cm) NRI vs. scale 5.85 2 0.0538
NTI vs. scale 2.61 2 0.2712

图3

宝天曼落叶阔叶林群落不同径级和不同尺度NRI(a)及NTI(b)的变化。横轴中A: 小径级1 cm ≤ DBH < 5 cm; B: 中径级5 cm ≤ DBH <10 cm; C: 大径级DBH ≥ 10 cm。"

[1] .APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
[2] .Bin Y, Wang ZG, Wang ZM, Ye WH, Cao HL, Lian JY (2010) The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology, 209, 237-256.
[3] .Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109-S122.
[4] .Chesson PL (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution and Systematics, 31, 343-366.
[5] .Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 10, 18-22.
[6] .Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boer PJD, Gradwell GR), pp. 298-312. Centre for Agricultural Publishing and Documentation, Wageningen.
[7] .Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
[8] .Faith DP (1994) Phylogenetic pattern and the quantification of organismal biodiversity. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 345, 45-58.
[9] .Gotelli NJ, Entsminger GL (2003) Swap algorithms in null model analysis. Ecology, 84, 532-535.
[10] .Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107-145.
[11] .Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a Neotropical forest. Ecological Research, 16, 859-875.
[12] .Jansen PA, Visser MD, Wright SJ, Rutten G, Muller-Landau HC (2014) Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm. Ecology Letters, 17,1111-1120.
[13] .Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
[14] .Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters, 12, 949-960.
[15] .Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
[16] .Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology, 87, S86-S99.
[17] .Kraft NJB, Cornwell WK, Webb CO (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283.
[18] .Liu XB, Liang M, Etienne RS, Wang Y, Staehelin C, Yu SX (2012) Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters, 15, 111-118.
[19] .Losos JB (1996) Phylogenetic perspectives on community ecology. Ecology, 77, 1344-1354.
[20] .Niu HY (牛红玉), Wang ZF (王峥峰), Lian JY (练琚愉), Ye WH (叶万辉), Shen H (沈浩) (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology. Biodiversity Science(生物多样性), 19, 275-283. (in Chinese with English abstract)
[21] .Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15.
[22] .Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science, 235, 167-171.
[23] .Song CS (宋朝枢) (1999) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese)
[24] .Stevens PF (2007) Angiosperm Phylogeny Website, version 8. .(accessed in October 2013
[25] .Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424.
[26] .Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780.
[27] .Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos, 58, 239-250.
[28] .Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. 296pp.
[29] .Wang T (王婷), Ren SY (任思远), Yuan ZL (袁志良), Zhu Y (祝燕), Pan N (潘娜), Li LX (李鹿鑫), Ye YZ (叶永忠) (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China. Biodiversity Science(生物多样性), 22, 449-457. (in Chinese with English abstract)
[30] .Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155.
[31] .Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
[32] .Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
[33] .Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183.
[34] .Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, S123-S131.
[35] .Webb CO, Pitman NC (2002) Phylogenetic balance and ecological evenness. Systematic Biology, 51, 898-907.
[36] .Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London,Series B: Biological Sciences, 268, 2211-2220.
[37] .Wright JS (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
[38] .Yuan ZL (袁志良), Chen Y (陈云), Wei BL (韦博良), Zhang BQ (张斌强), Wang DY (汪东亚), Ye YZ (叶永忠) (2013) Species habitat correlation analysis in temperate-subtropical ecological transition zone. Acta Ecologica Sinica(生态学报), 33, 7819-7826. (in Chinese with English abstract)
[1] 吴盼,彭希强,杨树仁,高亚男,白丰桦,衣世杰,杜宁,郭卫华. (2019) 山东省滨海湿地柽柳种群的空间分布格局及其关联性. 植物生态学报, 43(9): 817-824.
[2] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. (2019) 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征. 生物多样性, 27(4): 439-448.
[3] 刘校铭, 杨晓芳, 王璇, 张守仁. (2019) 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应. 植物生态学报, 43(3): 197-207.
[4] 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. (2019) 长白山温带森林不同演替阶段群落功能性状的空间变化. 植物生态学报, 43(3): 208-216.
[5] 庄鸿飞, 张殷波, 王伟, 任月恒, 刘方正, 杜金鸿, 周越. (2018) 基于最大熵模型的不同尺度物种分布概率优化热点分析: 以红色木莲为例. 生物多样性, 26(9): 931-940.
[6] 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. (2018) 极小种群野生植物黄梅秤锤树群落结构与动态. 生物多样性, 26(7): 749-759.
[7] 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. (2018) 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构. 植物生态学报, 42(4): 419-429.
[8] 高梅香, 林琳, 常亮, 孙新, 刘冬, 吴东辉. (2018) 土壤动物群落空间格局和构建机制研究进展. 生物多样性, 26(10): 1034-1050.
[9] 陈龙, 秦帅, 旭日, 杨柳, 赵利清. (2018) 阴山山脉天然侧柏林的基本特征. 生物多样性, 26(1): 66-74.
[10] 邢娟, 郑成洋, 冯婵莹, 曾发旭. (2017) 河北塞罕坝樟子松人工林生长及碳储量的变化. 植物生态学报, 41(8): 840-849.
[11] 姚良锦, 姚兰, 易咏梅, 艾训儒, 冯广, 刘峻城, 林勇, 黄伟, 丁易, 臧润国. (2017) 湖北七姊妹山亚热带常绿落叶阔叶混交林的 物种组成和群落结构. 生物多样性, 25(3): 275-284.
[12] 黄华, 陈智发, 刘德团, 和国星, 和荣华, 李德铢, 许琨. (2017) 玉龙雪山寒温性云冷杉林动态监测样地的物种组成及群落结构. 生物多样性, 25(3): 255-264.
[13] 刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋. (2017) 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征. 植物生态学报, 41(12): 1251-1261.
[14] 谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春. (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25(10): 1054-1064.
[15] 许格希, 史作民, 唐敬超, 许涵, 杨怀, 刘世荣, 李意德, 林明献. (2016) 物种多度和径级尺度对于评价群落系统发育结构的影响: 以尖峰岭热带山地雨林为例. 生物多样性, 24(6): 617-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed