生物多样性 ›› 2014, Vol. 22 ›› Issue (3): 366-374.doi: 10.3724/SP.J.1003.2014.13264

• • 上一篇    下一篇

连续13年稻鸭共作兼秸秆还田的稻麦连作麦田杂草种子库物种多样性变化

赵灿1, 戴伟民1, 李淑顺1, 魏守辉1, 韦继光2, 章超斌1, 强胜1, , A;*()   

  1. 1 .南京农业大学杂草研究室, 南京 210095
    2 .广西大学农学院, 南宁 530005
  • 收稿日期:2013-12-24 接受日期:2014-04-13 出版日期:2014-05-20
  • 通讯作者: 强胜 E-mail:wrl@njau.edu.cn
  • 基金项目:
    公益性行业(农业)科研专项经费(201303022)和国家科技支撑项目(2012BAD19B02)

Change in weed seed bank diversity over 13 consecutive years of rice- duck and straw returning farming system in the rice-wheat rotated wheat fields

Can Zhao1, Weimin Dai1, Shushun Li1, Shouhui Wei1, Jiguang Wei2, Chaobin Zhang1, Sheng Qiang1, *()   

  1. 1. Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095
    2. College of Agriculture, Guangxi University, Nanning 530005
  • Received:2013-12-24 Accepted:2014-04-13 Online:2014-05-20
  • Contact: Qiang Sheng E-mail:wrl@njau.edu.cn

稻鸭共作能有效控制稻田杂草的危害, 但是它对后茬小麦田杂草的影响及其控制作用尚没有详细的报道。我们于2000-2012年对江苏丹阳稻鸭共作兼秸秆还田的有机稻麦连作田土壤杂草种子库进行了连续13年的观察实验。结果显示, 稻鸭共作兼秸秆还田的措施使看麦娘(Alopecurus aequalis)、通泉草(Mazus japonicus)、碎米荠(Cardamine hirsuta)等18种麦田主要杂草的种子库均有较大幅度的降低, 总体的降低幅度高达97%。除了Pielou指数处于小幅波动状态外, 麦田杂草群落多样性指数整体呈下降趋势。丰富度下降表明杂草种子库向种类少、多样性低的方向演变。从Bray-Curtis指数和Jaccard相似性指数也可以得到同样的结论。可见, 连续稻鸭共作兼秸秆还田能够降低下茬的麦田土壤里杂草种子密度及多样性, 控制杂草危害。

关键词: 稻鸭共作, 秸秆还田, 有机稻麦轮作, 种子库动态, 物种多样性, 杂草群落相似性, 杂草综合管理

Research has shown that rice-duck farming systems can effectively control weed infestations in rice paddy fields, but it remains elusive how this type of system influences the dynamics and density of weeds in wheat fields. In order to explore the diversity of weeds in wheat field seed banks, we conducted a long-term experiment (13 consecutive years) to observe changes in weed seed bank diversity in rice-wheat rotated wheat fields in Danyang, Jiangsu Province. Results showed that the density of weed seeds in wheat field seed banks decreased continuously. The seed density of 18 weed species, including Alopecurus aequalis, Mazus japonicus, and Cardamine hirsuta, all decreased gradually with some annual fluctuations, and the overall rate of decrease for seeds of all weed species was 97%. Furthermore, rice-duck and wheat rotation farming decreased the richness, diversity, and evenness of weed species in wheat fields. Ecological indices implied a gradual change, which included fewer species, lower density, and lower diversity after adopting rice-duck and wheat return farming. The same conclusions could be drawn from both Jaccard’s similarity indices and Bray-Curtis coefficient of weed communities in wheat fields. Consecutive implementation of rice-duck and wheat rotation farming can significantly decrease both density and biodiversity of weeds in the seed bank of these ecosystems.

Key words: rice-duck farming, straw returning, organic rice-wheat cropping, weed seed bank dynamics, species diversity, weed community similarities, integrated weed management

图1

稻鸭共作兼秸秆还田体系中麦田杂草种子密度动态回归模型"

图2

连续13年稻鸭共作兼秸秆还田措施下麦田主要禾本科杂草种子密度的变化"

图3

连续13年稻鸭共作兼秸秆还田下麦田主要阔叶杂草种子密度的变化。(A)最大值大于5,000粒/m2; (B)最大值小于1,300粒/m2; (C)最大值介于1,300-5,000粒/m2之间。由图可见, 除个别年略有波动外, 主要麦田阔叶杂草种子密度都呈下降趋势。"

图4

连续13年稻鸭共作兼秸秆还田体系中麦田杂草种子库群落的多样性指数。H': Shannon-Wiener指数; R: Margalef丰富度指数; E: Pielou均匀度指数; D: Simpson优势度指数。"

表1

连续13年稻鸭共作兼秸秆还田对麦田杂草群落相似性的影响(对角线下方的数值为Bray-Curtis指数, 对角线上方的数值为Jaccard相似性指数)"

Jaccard

Bray-Curtis
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
2000 / 0.86 0.77 0.45 0.52 0.43 0.41 0.28 0.22 0.14 0.18 0.18 0.14
2001 0.11 / 0.81 0.55 0.55 0.52 0.43 0.35 0.29 0.15 0.25 0.25 0.14
2002 0.18 0.12 / 0.61 0.6 0.5 0.47 0.38 0.32 0.17 0.28 0.28 0.16
2003 0.40 0.30 0.24 / 0.56 0.64 0.4 0.47 0.38 0.17 0.33 0.33 0.15
2004 0.35 0.30 0.25 0.27 / 0.73 0.5 0.32 0.31 0.13 0.27 0.27 0.12
2005 0.42 0.33 0.33 0.22 0.16 / 0.57 0.35 0.27 0.15 0.31 0.31 0.14
2006 0.47 0.43 0.37 0.42 0.34 0.27 / 0.4 0.31 0.3 0.36 0.36 0.17
2007 0.59 0.50 0.46 0.38 0.52 0.47 0.42 / 0.64 0.27 0.45 0.45 0.25
2008 0.66 0.58 0.54 0.46 0.53 0.57 0.51 0.22 / 0.43 0.71 0.71 0.37
2009 0.76 0.74 0.71 0.69 0.74 0.70 0.52 0.55 0.37 / 0.6 0.6 0.4
2010 0.72 0.63 0.60 0.54 0.60 0.55 0.48 0.38 0.18 0.26 / 1 0.50
2011 0.72 0.64 0.60 0.54 0.61 0.56 0.48 0.38 0.19 0.27 0.03 / 0.50
2012 0.78 0.77 0.75 0.76 0.79 0.76 0.72 0.59 0.46 0.44 0.34 0.32 /
[1] Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin.Ecological Monographs, 27, 325-349.
[2] Cardina J, Sparrow DH (1996) A comparison of methods to predict weed seedling populations from the soil seed bank.Weed Science, 44, 46-51.
[3] Cavers PB (1995) Seed banks: memory in soil.Canadian Journal of Soil Science, 75, 11-13.
[4] Compile Group of Jiangsu Agricultural Geography (江苏农业地理编写组) (1979) Jiangsu Agricultural Geography (江苏农业地理). Jiangsu Science and Technology Press, Nanjing. (in Chinese)
[5] Ding YZ (丁永祯), Li ZA (李志安), Zou B (邹碧) (2005) Low-molecular-weight organic acids and their ecological roles in soil.Soils(土壤), 37, 243-250. (in Chinese with English abstract)
[6] Forcella F (1992) Prediction of weed seedling densities from buried seed reserves.Weed Research, 32, 29-38.
[7] Fried G, Norton LR, Reboud X (2008) Environmental and management factors determining weed species composition and diversity in France.Agriculture, Ecosystems and Environment, 128, 68-76.
[8] Gotoh S, Onikura Y (1971) Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice.Soil Science and Plant Nutrition, 17, 1-8.
[9] Guo X (郭宪), Jin YM (金玉美), Lian HM (连海明), Wang J (王娟) (2007) Effect of wheat stalk covering on weed germination and yield of summer corn. Journal of Anhui Agricultural Sciences (安徽农业科学), 35, 2584, 2596. (in Chinese with English abstract)
[10] Hill MO (1973) Diversity and evenness: a unifying notation and its consequences.Ecology, 54, 427-432.
[11] Huang H (黄红) (2001) Biological control: one way of the sustainable development of agriculture. Journal of Guizhou Normal University (Natural Science) (贵州师范大学学报自然科学版), 19, 40-41. (in Chinese with English abstract)
[12] Jiao JY, Zhang ZG, Bai WJ, Jia YF, Wang N (2012) Assessing the ecological success of restoration by afforestation on the Chinese loess plateau.Restoration Ecology, 20, 240-249.
[13] Légère A, Samson N (1999) Relative influence of crop rotation, tillage, and weed management on weed associations in spring barley cropping systems.Weed Science, 47, 112-122.
[14] Li FH (李粉华), Jiang LZ (蒋林忠), Sun GJ (孙国俊), Ji M (季敏), Dong B (董波), Diao FB (刁粉保), Qian ZS (钱招生), Li FL (李粉林), Wang GJ (王光俊), Wan YC (万玉成) (2007) The weed control effect under rice-duck farming in paddy fields.Weed Science(杂草科学), (2), 32-33. (in Chinese)
[15] Li SS, Wei SH, Zuo RL, Wei JG, Qiang S (2012) Changes in the weed seed bank over 9 consecutive years of rice-duck farming.Crop Protection, 37, 42-50.
[16] Liu YK (刘玉凯) (2002) Imminence of rectification of agricultural eco-environment.Rural Eco-Environment(农村生态环境), 18, 47-49. (in Chinese with English abstract)
[17] Lu YH (卢跃红), Wei HJ (魏红江), Zhang X (张曦), Yang HS (杨华松), Dai ZM (戴志明) (2006) The research on the mode of rice-duck mutualism.Journal of Yunnan Agricultural University(云南农业大学学报), 21, 81-85. (in Chinese with English abstract)
[18] Ma B (马波), Qiang S (强胜), Wei SH (魏守辉) (2004) Research methods for weed seed bank.Weed Science(杂草科学), (2), 5-8. (in Chinese)
[19] Ma KP (马克平), Liu YM (刘玉明) (1994) Measurement of biotic community diversity.Ⅰ. α diversity (Part 2).Chinese Biodiversity(生物多样性), 2, 231-239. (in Chinese)
[20] Ma KP (马克平), Liu CR (刘灿然), Liu YM (刘玉明) (1995) Measurement of biotic community diversity. II. β diversity.Chinese Biodiversity(生物多样性), 3, 38-43. (in Chinese)
[21] Margalef R (1958) Temporal Succession and Spatial Heterogeneity in Phytoplankton, pp. 323-347. University of California Press, California.
[22] Mayor JP, Dessaint F (1998) Influence of weed management strategies on soil seed bank diversity.Weed Research, 38, 95-105.
[23] Milner AM, Robertson AL, Monaghan KA, Veal AJ, Flory EA (2008) Colonization and development of an Alaskan stream community over 28 years.Frontiers in Ecology and the Environment, 6, 413-419.
[24] Parish T, Lakhani KH, Sparks TH (1994) Modelling the relationship between bird population variables and hedgerow and other field margin attributes. I. Species richness of winter, summer and breeding birds.Journal of Applied Ecology, 31, 764-775.
[25] Putman RJ, Wratten SD (1984) Principles of Ecology. University of California Press, California.
[26] Qiang S (2002) Weed diversity of arable land in China.Journal of Korean Weed Science, 22, 187-198.
[27] Qiang S (2005) Multivariate analysis, description, and ecological interpretation of weed vegetation in the summer crop fields of Anhui Province, China.Journal of Integrative Plant Biology, 47, 1193-1210.
[28] Qiang S (强胜) (2009) Weed Science (杂草学), 2nd edn. pp. 17-18. China Agriculture Press, Beijing. (in Chinese)
[29] Qiang S (强胜), Wei SH (魏守辉), Hu JL (胡金良) (2000) Study on weed infestation in main cotton regions of Jiangsu Province.Journal of Nanjing Agricultural University(南京农业大学学报), 23, 18-22. (in Chinese with English abstract)
[30] Qin YM, Liu SW, Guo YQ, Liu QH, Zou JW (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China.Biology and Fertility of Soils, 46, 825-834.
[31] Ren KT (任康太), Yang HZ (杨华铮) (1999) Present situation and developing countermeasures of herbicide.Jiangsu Chemical Industry(江苏化工), 27(2), 36-37. (in Chinese)
[32] Roberts HA, Ricketts ME (1979) Quantitative relationships between the weed flora after cultivation and the seed population in the soil.Weed Research, 19, 269-275.
[33] Shan YH (单玉华), Han Y (韩勇), Cai ZC (蔡祖聪), Johnson SE, Buresh RJ (2006) Accumulation of organic acids in relation to C:N ratios of straws and N application in flooded soil.Acta Pedologica Sinica(土壤学报), 43, 941-947. (in Chinese with English abstract)
[34] Usman K, Ullah I, Khan SM, Khan MU, Ghulam S, Khan MA (2012) Integrated weed management through tillage and herbicides for wheat production in rice-wheat cropping system in northwestern Pakistan.Journal of Integrative Agriculture, 11, 946-953.
[35] Van Nguyen N, Ferrero A (2006) Meeting the challenges of global rice production.Paddy and Water Environment, 4, 1-9.
[36] Wan KY (万开元), Pan JF (潘俊峰), Li RH (李儒海), Wang DZ (王道中), Tang LL (汤雷雷), Chen F (陈防) (2010) Influence of long-term different fertilization on soil weed seed bank diversity of a dry land under winter wheat-soybean rotation.Ecology and Environmental Sciences(生态环境学报), 19, 836-842. (in Chinese with English abstract)
[37] Wang GZ (王国忠), Yang PZ (杨佩珍), Lu ZR (陆峥嵘), Zhang ZH (张中华), Ye XL (叶兴林), Han SM (韩世明) (2004) Effect of returning straw to field on weeds of rice field and wheat field and the efficiency of chemical weeding.Acta Agriculturae Shanghai(上海农业学报), 20, 87-90. (in Chinese)
[38] Wang JP (汪金平), Cao CG (曹凑贵), Jin H (金晖), Wang CF (王昌付), Liu FH (刘丰颢) (2006) Effects of rice-duck farming on aquatic community in rice fields.Scientia Agricultura Sinica(中国农业科学), 39, 2001-2008. (in Chinese with English abstract)
[39] Wang KJ (王开金), Qiang S (强胜) (2005) Quantitative analysis of distribution of weed communities in wheat fields in the south of Jiangsu Province.Journal of Biomathematics(生物数学学报), 20, 107-114. (in Chinese)
[40] Wang XY (王小艺), Huang BQ (黄炳球) (1997) Effects of pesticides on agricultural ecosystems and ecological control strategies.Agro-Environmental Protection(农业环境保护), 16, 279-282. (in Chinese)
[41] Wei SH (魏守辉), Qiang S (强胜), Ma B (马波), Wei JG (韦继光) (2005a) Effects of different crop rotation system on the characteristics of soil weed seed bank.Chinese Journal of Ecology(生态学杂志), 24, 385-389. (in Chinese with English abstract)
[42] Wei SH (魏守辉), Qiang S (强胜), Ma B (马波), Wei JG (韦继光) (2005b) Soil weed seed bank and integrated weed management.Soils(土壤), 37, 121-128. (in Chinese with English abstract)
[43] Wei SH (魏守辉), Qiang S (强胜), Ma B (马波), Wei JG (韦继光), Chen JW (陈建卫), Wu JQ (吴建强), Xie TZ (谢桐洲), Shen XK (沈晓昆) (2006) Influence of long-term rice-duck farming systems on the composition and diversity of weed communities in paddy fields.Journal of Plant Ecology(植物生态学报), 30, 9-16. (in Chinese with English abstract)
[44] Wei SH (魏守辉), Qiang S (强胜), Ma B (马波), Wei JG (韦继光), Chen JW (陈建卫), Wu JQ (吴建强), Xie TZ (谢桐洲), Shen XK (沈晓昆) (2005c) Control effects of rice-duck farming and other weed management strategies on weed communities in paddy fields.Chinese Journal of Applied Ecology(应用生态学报), 16, 1067-1071. (in Chinese with English abstract)
[45] Wu CH (吴春华), Chen X (陈欣) (2004) Impact of pesticides on biodiversity in agricultural areas.Chinese Journal of Applied Ecology(应用生态学报), 15, 341-344. (in Chinese with English abstract)
[46] Yuan W, Cao C, Xing D (2012) Economic valuation associated with nitrogen losses from wetland rice-duck and rice-fish ecological system.Journal of Food Agriculture and Environment, 10, 1271-1278.
[47] Yin LP (印丽萍), Yan YS (颜玉树) (1997) Identification of Weed Seeds with Colored Photos (杂草种子图鉴). China Agricultural Science and Technology Press, Beijing. (in Chinese)
[48] Yu QY (俞琦英), Zhou WJ (周伟军) (2010) Occurrence rule and prevention research of weed community in rape field.Journal of Zhejiang Agricultural Sciences(浙江农业科学), (1), 123-127. (in Chinese)
[49] Zhang F (张帆), Sui P (隋鹏), Chen YQ (陈源泉), Gao WS (高旺盛) (2011) Nitrogen and phosphorus cycling from rice-duck mutual ecosystem during late rice growth season.Acta Ecologica Sinica(生态学报), 31, 1093-1100. (in Chinese with English abstract)
[50] Zhang J, Hamill AS, Gardiner IO, Weaver SE (1998) Dependence of weed flora on the active soil seed bank.Weed Research, 38, 143-152.
[51] Zhang JE (章家恩), Xu RB (许荣宝), Quan GM (全国明), Zhao BL (赵本良) (2011) Influence of rice-duck integrated farming on rice growth and yield characteristics.Resources Science(资源科学), 33, 1053-1059. (in Chinese with English abstract)
[52] Zhang XA (张孝安) (2007) The application and present situation of rice-duck farming in China.World Agriculture(世界农业), (4), 51-54. (in Chinese)
[53] Zhang YG (张银贵), Li L (李莲), Huang Q (黄奇), Li AG (李爱国) (2013) Research and application of rice-duck farming pharmacy reduction and control technology.China Rice(中国稻米), 19, 56-57. (in Chinese)
[54] Zhu DF (朱德峰), Chen HZ (陈惠哲), Xu YC (徐一成) (2007) Countermeasure and perspective of mechanization of rice planting in China.North Rice(北方水稻), (5), 13-18. (in Chinese with English abstract)
[1] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[2] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[3] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[4] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[5] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[6] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[7] 李俊凝, 李通, 魏玉莲. (2019) 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系. 生物多样性, 27(8): 880-886.
[8] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[9] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. (2019) 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局. 生物多样性, 27(7): 778-786.
[10] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[11] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响. 生物多样性, 27(6): 607-618.
[12] 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43(5): 383-395.
[13] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. (2019) 海南岛翼手目物种多样性现状与分布预测. 生物多样性, 27(4): 400-408.
[14] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. (2019) 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局. 生物多样性, 27(2): 177-185.
[15] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. (2019) 中国沿海洛氏角毛藻复合群的多样性组成及地理分布. 生物多样性, 27(2): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed