生物多样性 ›› 2013, Vol. 21 ›› Issue (3): 326-333.doi: 10.3724/SP.J.1003.2013.08223

• • 上一篇    下一篇

不同类群水生昆虫群落间的一致性以及空间和环境因子的相对作用

秦春燕1, *, 张勇1, *, 于海燕2, 王备新1, **()   

  1. 1 南京农业大学植物保护学院昆虫系水生昆虫与溪流生态实验室, 南京 210095
    2 浙江省环境监测中心, 杭州 310007
  • 收稿日期:2012-11-22 接受日期:2013-04-22 出版日期:2013-05-20
  • 通讯作者: 秦春燕,张勇,王备新 E-mail:wangbeixin@njau.edu.cn
  • 基金项目:
    国家自然科学基金(30870345, 40971280)

Concordance among different aquatic insect assemblages and the relative role of spatial and environmental variables

Chunyan Qin1, *, Yong Zhang1, *, Haiyan Yu2, Beixin Wang1, **()   

  1. 1 Laboratory of Aquatic Insects and Stream Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095
    2 Zhejiang Environmental Monitoring Center, Hangzhou 310007
  • Received:2012-11-22 Accepted:2013-04-22 Online:2013-05-20
  • Contact: Qin Chunyan,Zhang Yong,Wang Beixin E-mail:wangbeixin@njau.edu.cn

生物多样性监测和保护过程中通常用到指示类群, 然而对于这些指示类群有效性的测度仍然十分欠缺。为探讨不同类群水生昆虫群落的一致性及空间因子、环境变量的相对影响, 作者于2010年4月对东苕溪流域源头溪流21个采样点进行了调查。共记录水生昆虫7目44科92属130种。我们将水生昆虫群落划分成鞘翅目(C)、蜉蝣目+襀翅目+毛翅目(EPT)和双翅目+广翅目+蜻蜓目(DMO)3个类群。一致性分析结果表明: 3个类群的群落一致性(r)较高, 分别为C对EPT r = 0.65 (P<0.001)、C对DMO r = 0.67 (P<0.001)、EPT对DMO r = 0.82 (P<0.001)。方差分解表明环境变量是影响不同类群水生昆虫群落结构的主要因素, 空间因子的影响相对较小。环境因子中影响不同类群水生昆虫群落的关键变量大体相似, 其中海拔、pH、平均流速和化学需氧量是最主要的驱动因子。我们的结果表明该研究区域不同类群的水生昆虫群落一致性很高, 且对环境变量的响应也相似; 因此, 在水生昆虫生物多样性保护中可考虑利用其中的某一类群, 如蜉蝣目+襀翅目+毛翅目(EPT)类群, 作为有效的指示类群。

关键词: 群落一致性, 水生昆虫, 空间因子, 环境变量, 生物多样性

Indicator groups are often used for biodiversity monitoring and conservation, however, the effectiveness of these groups in representing biodiversity is rarely tested. To explore community congruence among different aquatic insect groups and how this may be affected by spatial factors and environmental variables, we carried out an investigation on aquatic insects in April 2010 in 21 headwater streams within the Dongtiaoxi Basin, China. In total, we recorded 130 species from 92 genera, 44 families and 7 orders. We divided the stream insects into three groups, Coleoptera (C), Ephemeroptera + Plecoptera + Trichoptera (EPT), and Diptera + Megaloptera + Odonata (DMO). In Mantel tests, three aquatic insect groups showed significant cross-taxon concordance, C versus EPT (r= 0.65, P< 0.001), C versus DMO (r= 0.67, P< 0.001) and EPT versus DMO (r= 0.82, P< 0.001). According to variance partitioning procedures, environmental variables were the major determinants of aquatic insect community structures, while spatial factors were less important. Species composition in different taxon groups exhibited similar relationships to environmental gradients. Altitude, pH, mean velocity and concentration of oxygen were the most important drivers of aquatic insect assemblage patterns. Overall, our results indicated that, at least in the studied region, community congruence among different aquatic insect groups was strong. We propose that one group, such as the EPT group, may be used as a biodiversity indicator in future cost-effective surveys.

Key words: community congruence, aquatic insect, spatial factors, environmental variables, biodiversiy

图1

浙江东苕溪流域源头溪流底栖动物采样点分布图"

表1

东苕溪流域底栖动物采样点主要环境变量的均值和范围"

变量
Variables
缩写
Abbreviation
平均值±标准误
Mean ± SE
最小值
Minimum
最大值
Maximum
海拔 Altitude (m) alt 326 ± 43 35 796
总氮 Total nitrogen (mg/L) TN 1.37 ± 0.33 0.82 2.73
磷酸盐 Phosphorus (mg/L) PO4 0.02 ± 0.01 0.00 0.08
化学需氧量 Chemical oxygen demand (mg/L) COD 2.50 ± 0.30 0.32 6.62
酸碱度 pH pH 7.7 ± 0.2 6.5 9.7
溶解氧 Dissolved oxygen (mg/L) DO 9.7 ± 0.2 8.1 12.7
电导 Conductivity (µg/cm) Cond 80 ± 19 22 440
钙离子 Mean Ca2+ concentration (mg/L) Ca 64 ± 6 23 122
镁离子 Mean Mg2+ concentration (mg/L) Mg 5 ± 1 2 24
平均流速 Mean velocity (m/s) Vmean 0.6 ± 0.1 0.1 1.4
平均水宽 Mean wetted width (m) Width 2.3 ± 0.4 0.4 7.1
平均水深 Mean depth (cm) Depth 12 ± 2 3 26
砂 Percentage of sand substrate Sand 0.11 ± 0.04 0.00 0.62
砾石 Percentage of gravel substrate Gravel 0.45 ± 0.04 0.00 0.85
卵石 Percentage of cobble substrate Cobble 0.62 ± 0.03 0.38 0.84

表2

东苕溪源头溪流水生昆虫种类组成及出现频度"

物种 Species 频度 Frequency 物种 Species 频度 Frequency
鞘翅目 Coleoptera 新襀属一种 Neoperla sp. 0.29
长角泥甲科 Elmidae 毛翅目 Trichoptera
Macronychus sp. 0.38 短石蛾科 Brachycentridae
Neocylloepus sp. 0.29 Micrasema sp. 0.33
Ordobreria sp. 0.43 枝石蛾科 Colamoceratidae
Stenelmis sp. 1.00 Anisocentropus sp.1 0.29
水龟虫科 Hydrophilidae Glossosoma sp. 0.67
Berosus sp. 0.48 纹石蛾科 Hydropsychidae
Enochrus sp. 0.38 班侧枝纹石蛾 Aphropsyche sp. 2 0.29
扁泥甲科 Psephenidae 心唇纹石蛾 Cheumatopsyche sp. 1 0.38
Macroeubria sp. 0.33 平唇纹石蛾 Cheumatopsyche sp. 3 0.52
Nipponeubria sp. 0.29 黄条纹石蛾 Hydropsyche sp.3 0.33
Psephenus sp. 0.38 鳞石蛾科 Lepidostomatidae
沼甲科 Scirtidae 鳞石蛾属一种 Lepidostoma sp. 0.43
Scrites sp. 0.86 沼石蛾科 Limnephilidae
蜉蝣目 Ephemeroptera Apatania sp. 0.29
四节蜉科 Baetidae 多距石蛾科 Polycentropodidae
四节蜉属一种 Baetis sp. 1.00 Neureclipsis sp. 0.62
花翅蜉属一种 Baetiella sp. 0.48 原石蛾科 Rhyacophilidae
小蜉科 Ephemerellidae 原石蛾属一种 Rhyacophila sp. 0.75
美丽弯握蜉 Drunella bella 0.29 双翅目 Diptera
小蜉属一种 Ephemerella sp. 0.48 摇蚊科 Chironomidae
锯形蜉属一种 Serratella sp. 0.48 环足摇蚊属一种 Cricotopus sp. 0.29
蜉蝣科 Ephemeridae 真开氏摇蚊属一种 Eukiefferiella sp. 0.57
绢蜉 Ephemera serica 0.38 直突摇蚊属一种 Orthocladius sp. 0.52
扁蜉科 Heptageniidae 无突摇蚊属一种 Ablabesmyia sp. 1.00
似动蜉属一种 Cinygmin sp. 0.43 大粗腹摇蚊属一种 Macropelopia sp. 0.29
高翔蜉属一种 Epeorus sp. 1 0.43 长足摇蚊属一种 Tanypus sp. 0.29
高翔蜉属一种 Epeorus sp. 2 0.29 蚋科 Simuliidae 0.76
何氏高翔蜉 Epeorus herklots 0.52 广翅目 Megaloptera
扁蜉属一种 Heptagenia sp. 0.86 Corydalidae
赞蜉属一种 Paegniodes sp. 0.71 斑齿蛉属一种 Neochauliodes sp. 0.43
细裳蜉科 Leptophlebiidae 星齿蛉属一种 Protohermes sp. 0.33
宽基蜉属一种 Choroterpes sp. 0.57 蜻蜓目 Odonata
柔裳蜉属一种 Habrophlebiodes sp. 0.95 综蟌科一种 Chlorolestidae sp. 0.29
襀翅目 Plecoptera 大蜓科 Cordulegasteridae
叉襀科 Nemouridae 大蜓属一种 Cordulegaster sp. 0.33
倍叉襀属一种 Amphinemura sp. 0.29 溪蟌科一种 Euphaeidae sp. 0.38
中叉襀属一种 Mesonemura sp. 0.48 春蜓科 Gomphidae
襀科 Perlidae 环尾春蜓属一种 Lamelligomphus sp. 0.43
钩襀属一种 Kamimuria sp. 1.00 华春蜓属一种 Sinogomphus sp. 0.29

图2

结合关键环境变量的鞘翅目(C)、蜉蝣目+襀翅目+毛翅目(EPT)、双翅目+广翅目+蜻蜓目(DMO)类群水生昆虫群落多维尺度排序"

表3

环境变量与鞘翅目(C)、蜉蝣目+襀翅目+毛翅目(EPT)、双翅目+广翅目+蜻蜓目(DMO)3种不同类群水生昆虫群落排序的相关性(r2)"

C EPT DMO
r2 P r2 P r2 P
环境变量
Environmental variables
海拔 Altitude (alt) 0.50 0.003 0.57 0.001 0.54 0.003
总氮 Total nitrogen (TN) 0.42 0.003 0.30 0.032 0.38 0.009
化学需氧量 Chemical oxygen demand (COD) 0.36 0.014 0.39 0.003 0.44 0.002
酸碱度 pH 0.83 0.001 0.67 0.001 0.90 0.001
溶解氧 Dissolved oxygen (DO) 0.39 0.011 0.39 0.011 0.50 0.002
平均流速 Mean velocity (Vmean) 0.51 0.002 0.42 0.004 0.61 0.001
平均水宽 Mean wetted width (Width) 0.01 0.938 0.22 0.101 0.35 0.017
平均水深 Mean depth (Depth) 0.22 0.110 0.33 0.025 0.38 0.016
砂 Percentage of sand substrate (Sand) 0.57 0.542 0.11 0.335 0.28 0.04
空间因子
Spatial factors
PCNM1 0.77 0.001 0.81 0.001 0.91 0.001
PCNM13 0.26 0.035 0.01 0.906 0.02 0.848
1 Briers RA, Biggs J (2003) Indicator taxa for the conservation of pond invertebrate diversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 323-330.
2 Collier KJ, Quinn JM (2003) Land-use influences macro-inver- tebrate community response following a pulse disturbance. Freshwater Biology, 48, 1462-1481.
3 Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
4 Gaston KJ, Williams PH (1996) Spatial patterns in taxonomic diversity. In: Biodiversity: A Biology of Numbers and Difference (ed. Gaston KJ), pp. 202-229. Blackwell Science, Oxford.
5 Grenouillet G, Brosse S, Tudesque L, Lek S, Baraillé Y, Loot G (2008) Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Diversity and Distributions, 14, 592-603.
6 Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators, 10, 112-117.
7 Heino J (2002) Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation, 11, 137-147.
8 Heino J, Paavola R, Virtanen R, Muotka T (2005) Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodiversity and Conservation, 14, 415-428.
9 Heino J, Tolonen KT, Kotanen J, Paasivirta L (2009) Indicator groups and congruence of assemblage similarity, species richness and environmental relationships in littoral macroinvertebrates. Biodiversity and Conservation, 18, 3085-3098.
10 Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology, 51, 1757-1785.
11 Kati V, Devillers P, Dufrene M, Legakis A, Vokou D, Lebrun P (2004) Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conservation Biology, 18, 667-675.
12 Kondolf GM (1997) Application of the pebble count notes on purpose, method, and variants. Journal of the American Water Resources Association, 33, 79-87.
13 Li JG (李金国), Wang QC (王庆成), Yan SC (严善春), Yao Q (姚琴), Qiao SL (乔树亮), Lü YD (吕跃东), Han ZX (韩壮行) (2007) Community characteristics of aquatic insects and bioassessment for water quality in lower order streams in Liangshui and Maoershan watersheds, Heilongjiang, China. Acta Ecologica Sinica(生态学报), 27, 5008-5018. (in Chinese with English abstract)
14 Margules CR, Pressey RL (2000) Systematic conservation planning. Nature, 405, 243-253.
15 Ministry of Environmental Protection of the People’s Republic of China(中华人民共和国环境保护部) (2002) Standard Methods for the Analysis of Water and Wastewater(水和废水监测分析方法). Science Press, Beijing(in Chinese)
16 Morse JC,Yang LF,Tian LX(1994) Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, China
17 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent K (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
18 Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4, 355-364.
19 Oksanen J,Blanchet FG,Kindt R,Legendre P,Minchin PR,O’Hara RB,Simpson GL,Solymos P,Stevens MH,Wagner H (2012) Vegan: Community Ecology Package. R package version 2.0-5. .
20 Paavola R, Muotka T, Virtanen R, Heino J, Jackson D, Mäki-Petäys A (2006) Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications, 16, 368-379.
21 Passy SI, Bode RW, Carlson DM, Novak MA (2004) Comparative environmental assessment in the studies of
22 benthic diatom, macroinvertebrate, and fish communities. International Review of Hydrobiology, 89, 121-138.
23 Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Biological Sciences, 345, 75-79.
24 Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annual Review of Ecology, Evolution and Systematics, 38, 713-737.
25 Sánchez-Fernández D, Abellán P, Mellado A, Velasco J, Millan A (2006) Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain). Biodiversity and Conservation, 15, 4507-4520.
26 Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
27 Sauberer N, Zulka KP, Abensperg-Traun M, Berg HM, Bier- inger G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biological Conservation, 117, 181-190.
28 Soininen J, Paavola R, Kwandrans J, Muotka T (2009) Diatoms: unicellular surrogates for macroalgal community structure in streams? Biodiversity and Conservation, 18, 79-89.
29 Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conservation Biology, 18, 167-173.
30 Suren AM (1994) Macroinvertebrate communities of streams in western Nepal: effects of altitude and land use. Freshwater Biology, 32, 323-336.
31 Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Science, 37, 130-137.
32 Vellend M, Lilley PL, Starzomski BM (2008) Using subsets of species in biodiversity surveys. Journal of Applied Ecology, 45, 161-169.
33 Wang BX (王备新), Yang LF (杨莲芳) (2003) Bioassessment of Qinhuai River using a river biological index. Acta Ecologica Sinica(生态学报), 23, 2082-2091. (in Chinese with English abstract)
34 Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, Pressey R (2002) A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10, 155-174.
35 Wolman MG (1954) A method of sampling coarse river-bed material. Transactions of the American Geophysical Union, 35, 951-956.
36 Yang ZC (颜忠诚), Zhong H (2004) Aquatic insects. Bulletin of Biology(生物学通报), 39, 15-17. (in Chinese)
[1] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[3] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[4] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[5] 张渊媛. (2019) 生物多样性相关传统知识的国际保护及中国应对策略. 生物多样性, 27(7): 708-715.
[6] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[7] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[8] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
[9] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
[10] 曹宁, 薛达元. (2019) 论壮族传统文化对生物多样性的保护: 以广西靖西市为例. 生物多样性, 27(7): 728-734.
[11] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[12] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
[13] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[14] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
[15] 李晗溪, 黄雪娜, 李世国, 战爱斌. (2019) 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警. 生物多样性, 27(5): 491-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed