生物多样性 ›› 2019, Vol. 27 ›› Issue (8): 911-918.doi: 10.17520/biods.2019237

• • 上一篇    

小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构

刘君1, 王宁2, 崔岱宗2, 卢磊2, 赵敏2, *()   

  1. 1. 内蒙古大兴安岭林业科学技术研究所, 内蒙古牙克石 022150
    2. 东北林业大学生命科学学院, 哈尔滨 150040
  • 收稿日期:2019-07-25 接受日期:2019-09-19 出版日期:2019-08-20
  • 通讯作者: 赵敏 E-mail:82191513@163.com
  • 基金项目:
    科技部科技基础性工作专项(2014FY210400)

Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains

Jun Liu1, Ning Wang2, Daizong Cui2, Lei Lu2, Min Zhao2, *()   

  1. 1. Inner Mongolia Daxing’anling Forestry Science and Technology Research Institute, Yakeshi, Inner Mongolia 022150;
    2. College of Life Sciences, Northeast Forestry University, Harbin 150040
  • Received:2019-07-25 Accepted:2019-09-19 Online:2019-08-20
  • Contact: Zhao Min E-mail:82191513@163.com

土壤细菌是森林生态系统的一个重要组成成分, 是生态系统中物质循环和能量流动的重要参与者, 细菌群落组成和生物多样性是反映土壤生态功能的重要指标。本文利用高通量测序技术分析了大亮子河国家森林公园内红松(Pinus koraiensis)林、落叶松(Larix gmelinii)林、蒙古栎(Quercus mongolica)林、枫桦(Betula costata)林、针阔混交林、灌木林和草甸等7种不同生境土壤细菌群落组成和多样性的差异性, 探讨该地区土壤细菌群落对不同生境的响应, 为地区森林生态系统的经营管理及生态系统稳定性的维护提供科学理论基础。在门的水平上, 各生境的细菌群落组成基本一致, 其中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)在7种生境土壤中相对丰度均大于10.0%, 是细菌中的优势菌门。在属的水平上, 共测得245个菌属, 各样地共有属118个, 占总属数的48.2%, 占总相对丰度的97.8%; 优势菌属分别为Spartobacteria_ genera_incertae_sedisGaiellaGp16Gp4, 占总相对丰度的47.0%, Spartobacteria_genera_incertae_sedis在7种生境土壤中丰度均最高。7种生境下的土壤细菌多样性和土壤理化因子存在着显著的差异, 红松林的土壤细菌群落多样性和丰富度均高于其他生境。土壤pH是大亮子河森林公园影响土壤细菌多样性的关键因子。

关键词: 小兴安岭, 高通量测序, 不同生境, 细菌多样性, 土壤pH

Soil bacteria are important participants in the material cycling and energy flows in forest ecosystems. Therefore, the composition and biodiversity of bacterial communities are major indicators of soil ecological function. The aim of this study was to investigate the structure and diversity of bacterial communities across seven different habitats (i.e. Pinus koraiensis, Larix gmelinii, Quercus mongolica, Betula costata, coniferous-broad-leaved mixed forests, shrubs and meadows) in Da liangzihe National Forest Park by using high throughput sequencing technology. At the phylum level, the bacterial community composition was basically the same in all habitats, with Proteobacteria, Actinobacteria, Acidobacteria and Verrucomicrobia dominating the bacterial phyla by having relative abundance of more than 10%. At the genus level, 245 genera were identified, with 118 common genera accounting for 48.2% of all genera and 97.8% of the total relative abundance. The dominant genera, Spartobacteria_genera_incertae_sedis, Gaiella, Gp16 and Gp4, made up 47.0% of the total relative abundance. Spartobacteria_genera_incertae_sedis was the most abundant genus in every habitat. In addition, the soil bacterial diversity and the soil physicochemical factors differed significantly among the habitats. Both the diversity and richness of the soil bacterial community were higher in Pinus koraiensis than the other habitats. Soil pH was found to be a key factor affecting soil bacterial community diversity in Da Liangzihe National Forest Park.

Key words: the Lesser Khinggan Mountains, high throughput sequencing, different habitats, bacterial diversity, soil pH

图1

不同生境97%相似性的OTU稀释曲线"

表1

7种生境土壤理化性质及土壤细菌多样性统计分析(平均值 ± 标准差)"

样地
Sample
有机碳
Organic C (g/kg)
有效氮
Available N (g/kg)
有效磷
Available P (g/kg)
碳氮比
C/N
pH OTUs Shannon指数 Shannon index 丰富度指数
Chao1 index
红松林 HS 117.64 ± 2.9a 4.09 ± 0.02a 1.18 ± 0.038a 28.77 ± 1.24a 5.93 ± 0.13a 1897 ± 23.33a 9.05 ± 0.0013a 2082.56 ± 5.97a
落叶松林 LY 159.16 ± 6.1b 6.09 ± 0.234bd 1.44 ± 0.016bd 26.13 ± 0.74b 5.46 ± 0.12b 1613 ± 12.02b 8.43 ± 0.0013b 1955.04 ± 10.35b
蒙古栎林 MG 127.53 ± 5.9c 5.31 ± 0.085c 1.30 ± 0.031ab 24.02 ± 0.74c 5.38 ± 0.39bd 1376 ± 14.85c 7.78 ± 0.0008c 1652.53 ± 8.77c
枫桦林 FH 127.53 ± 5.0c 5.28 ± 0.158c 1.24 ± 0.021a 24.14 ± 2.16c 5.41 ± 0.18cd 1366 ± 24.04c 7.96 ± 0.0021d 1598.54 ± 9.76c
灌木林 GM 120.81 ± 2.7ac 5.98 ± 0.062d 1.44 ± 0.060bd 20.19 ± 1.48d 5.35 ± 0.35cd 1692 ± 15.56d 8.74 ± 0.0013e 1901.82 ± 10.74b
草地 CD 146.49 ± 4.5d 6.31 ± 0.506d 2.26 ± 0.024c 23.27 ± 1.14c 5.33 ± 0.22bd 1485 ± 13.26e 8.25 ± 0.0017f 1781.80 ± 8.66d
针阔混交林 ZK 122.25 ± 1.8ac 5.15 ± 0.124c 1.51 ± 0.024d 23.74 ± 0.85c 6.05 ± 0.25e 1799 ± 28.21a 9.16 ± 0.0015a 1928.39 ± 4.12b

图2

7种生境下的土壤细菌beta多样性分析(加权)"

图3

不同生境下门(a)和属(b)的细菌群落组成。HS: 红松林; LY: 落叶松林; MG: 蒙古栎林; FH: 枫桦林; GM: 灌木林; CD: 草地; ZK: 针阔混交林。"

图4

不同生境物种丰度聚类分析。HS: 红松林; LY: 落叶松林; MG: 蒙古栎林; FH: 枫桦林; GM: 灌木林; CD: 草地; ZK: 针阔混交林。"

表2

土壤理化性质与细菌多样性的相关性分析"

有机碳 Organic carbon 有效氮 Available N 有效磷 Available P 碳氮比 C/N pH
OTUs -0.390 -0.466 -0.185 0.331 0.768*
Shannon指数 Shannon index -0.349 -0.371 -0.082 0.182 0.782*
丰富度指数 Chao1 index -0.052 -0.297 -0.086 0.416 0.608
Simpson指数 Simpson index -0.303 -0.490 -0.067 0.382 0.839*

图5

10大优势菌属与土壤环境因子的典型相关分析"

1 Berg G, Grube M, Schloter M, Smalla K ( 2014) Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5, 1-7.
2 Chabrerie O, Laval K, Puget P, Desaire S, Alard D ( 2003) Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Applied Soil Ecology, 24, 43-56.
3 Colombo F, Macdonald CA, Jeffries TC, Powell JR, Singh BK ( 2016) Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology & Biochemistry, 94, 200-210.
4 Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2017) Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta. Acta Pedologica Sinica, 54, 1293-1298.(in Chinese with English abstract)
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2017) 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54, 1293-1302.]
5 Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2018) Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 54, 81-89.(in Chinese with English abstract)
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2018) 基于高通量测序的 4 种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 54, 81-89.]
6 Djukic I, Zehetner F, Mentler A, Gerzabek MH ( 2010) Microbial community composition and activity in different alpine vegetation zones. Soil Biology & Biochemistry, 42, 155-161.
7 Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC ( 2009) Global patterns in belowground communities. Ecology Letters, 12, 1238-1249.
8 Gömöryoá E, Hrivnák R, Janišová M, Ujházy K, Gömöry D ( 2009) Changes of the functional diversity of soil microbial community during the colonization of abandoned grassland by a forest. Applied Soil Ecology, 43, 191-199.
9 Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS ( 2011) The bacterial biogeography of British soils. Environmental Microbiology, 13, 1642-1654.
10 Lauber CL, Hamady M, Knight R, Fierer N ( 2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120.
11 Lan GY, Li YW, Wu Z, Xie GS ( 2017) Impact of tropical forest conversion on soil bacterial diversity in tropical region of China. European Journal of Soil Biology, 83, 91-97.
12 Lin YT, Huang YJ, Tang SL, Whitman WB, Coleman DC, Chiu CY ( 2010) Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microbial Ecology, 59, 369-378.
13 Li ZZ, Zhu LB, Lin YC, Hu YG, Zeng ZH ( 2010) Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbeier grassland. Acta Ecologica Sinica, 30, 2883-2889.(in Chinese with English abstract)
[ 李梓正, 朱立博, 林叶春, 胡跃高, 曾昭海 ( 2010) 呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化. 生态学报, 30, 2883-2889.]
14 Liu CL, Zuo WY, Zhao ZY, Qiu LH ( 2012) Bacterial diversity of different successional stage forest soils in Dinghushan. Acta Microbiologica Sinica, 52, 1489-1496.(in Chinese with English abstract)
[ 柳春林, 左伟英, 赵增阳, 邱礼鸿 ( 2012) 鼎湖山不同演替阶段森林土壤细菌多样性. 微生物学报, 52, 1489-1496.]
15 Lu RK ( 2000) The Method of Soil Agricultural Chemical Analysis. China Agriculture Science & Technology Press, Beijing.(in Chinese)
[ 鲁如坤 ( 2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
16 Margesin R, Jud M, Tscherko D, Schinner F ( 2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218.
17 Prescott CE, Grayston SJ ( 2013) Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. Forest Ecology and Management, 309, 19-27.
18 Ren CJ, Liu WC, Zhao FZ, Zhong ZK, Deng J, Han XH, Yang GH, FengYZ, Ren GX ( 2019) Soil bacterial and fungal diversity and compositions respond differently to forest development. CATENA, 181, 104071.
19 Sáenz de Miera LE, Arroyo P, Calabuig EDL, Falagán J, Ansola G ( 2014) High-throughput sequencing of 16s RNA genes of soil bacterial communities from a naturally occurring CO2 gas vent. International Journal of Greenhouse Gas Control, 29, 176-184.
20 Santonja M, Foucault Q, Rancon A, Gauquelin T, Fernandez C, Baldy V, Mirleau P ( 2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology & Biochemistry, 125, 27-36.
21 Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY ( 2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211.
22 Singh D, Takahashi K, Kim M, Chun J, Adams JM ( 2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microbial Ecology, 63, 429-437.
23 Song HJ, Ye J, Shi S, Zhang ZC, Kuang X, Xing DL, Yuan ZQ, Lin F, Cai CJ, Wang XG, Hao ZQ ( 2014) Woody plant species composition and community structure in residual fragments of broadleaved Korean pine mixed forests in Changbai Mountains area. Chinese Journal of Applied Ecology, 25, 1239-1249.(in Chinese with English abstract)
[ 宋厚娟, 叶吉, 师帅, 张昭臣, 匡旭, 邢丁亮, 原作强, 蔺菲, 蔡成军, 王绪高, 郝占庆 ( 2014) 长白山区阔叶红松林残留片段木本植物物种组成与群落结构. 应用生态学报, 25, 1239-1249.]
24 Stone MM, Kan JJ, Plante AF ( 2015) Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biology & Biochemistry, 80, 273-282.
25 Sui X, Zhang RT, Zhong HX, Xu N, Wang JF, Liu YZ, Yuan HF, Ni HW ( 2015) Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high-throughput sequencing technology in Sanjiang Plain. Soil, 47, 919-925.(in Chinese with English abstract)
[ 隋心, 张荣涛, 钟海秀, 许楠, 王继丰, 刘应竹, 袁海峰, 倪红伟 ( 2015) 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究. 土壤, 47, 919-925.]
26 Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB ( 2016) Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 32, 14-20.(in Chinese with English abstract )
[ 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 ( 2016) 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32, 14-20.]
27 Wang QB, Zhang SL, Zhang HJ, Wang CB, Qi XL, Song GH, Zhang SP ( 2015) Analysis of plant species composition at different levels in the Da Liangzi River National Forest Park. Auhui Agricultural Science Bulletin, 21(3/4), 24-26.(in Chinese )
[ 王全波, 张淑兰, 张海军, 王长宝, 戚晓利, 宋国华, 张守平 ( 2015) 大亮子河国家森林公园林乔灌草不同层次植物物种组成分析 . 安徽农学通报, 21(3/4), 24-26.]
28 Zhang HJ, Wang CB, Liu YH, Zhang SL, Zhang SP ( 2011) Vascular plant resources and their diversity in Daliangzihe National Forest Park. Hubei Agricultural Sciences, 50, 2217-2224.(in Chinese with English abstract )
[ 张海军, 王长宝, 刘玉红, 张淑兰, 张守平 ( 2011) 大亮子河国家森林公园林乔灌草不同层次植物物种组成分析. 湖北农业科学, 50, 2217-2224.]
29 Zhang YG, Cong J, Lu H, Li GL, Xue YD, Deng Y, Li H, Zhou JZ, Li DQ ( 2015) Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microbial Biotechnology, 8, 739-746.
30 Zhu S, Vivanco JM, Manter DK ( 2016) Nitrogen fertilizer rate affects root exudation the rhizosphere microbiome and nitrogen-use efficiency of maize. Applied Soil Ecology, 107, 324-333.
[1] 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J]. 生物多样性, 2019, 27(9): 960-969.
[2] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 大小兴安岭可培养细菌的资源多样性[J]. 生物多样性, 2019, 27(8): 903-910.
[3] 任梅蓉, 杨秋霞, 魏鑫丽. 东北大小兴安岭地区梅衣科岛衣类和袋衣类地衣物种多样性[J]. 生物多样性, 2019, 27(8): 833-841.
[4] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. 大小兴安岭针叶树倒木上木腐真菌的物种多样性[J]. 生物多样性, 2019, 27(8): 887-895.
[5] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化[J]. 生物多样性, 2019, 27(5): 557-566.
[6] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[7] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[8] 张媚, 林马水, 曹秀秀, 赵树民, 蒋达青, 王冰璇, 汪石莹, 樊炎迪, 郭明, 林海萍. 不同经营模式山核桃林地土壤pH值、养分与细菌多样性的差异[J]. 生物多样性, 2018, 26(6): 611-619.
[9] 邓晓娟, 刘建利, 闫兴富, 刘培贵. 用传统分离培养法和高通量测序技术分析印度块菌子囊果内细菌的群落结构[J]. 生物多样性, 2018, 26(12): 1318-1324.
[10] 陈龙, 李月辉, 胡远满, 熊在平, 吴文, 李悦, 问青春. 小兴安岭铁力林业局冬季西伯利亚狍(Capreolus pygargus)的生境选择[J]. 生物多样性, 2017, 25(4): 401-408.
[11] 曹云, 沈文静, 陈炼, 胡飞龙, 周蕾, 徐海根. Metabarcoding技术在真菌多样性研究中的应用[J]. 生物多样性, 2016, 24(8): 932-939.
[12] 吴文, 李月辉, 胡远满, 陈龙, 李悦, 李泽鸣, 聂志文, 陈探. 小兴安岭南麓马鹿冬季适宜生境评价[J]. 生物多样性, 2016, 24(1): 20-29.
[13] 朱珣之, 李强, 李扬苹, 韩洪波, 马克平. 紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响[J]. 生物多样性, 2015, 23(5): 665-672.
[14] 赵爱花, 杜晓军, 臧婧, 张守仁, 焦志华. 宝天曼落叶阔叶林土壤细菌多样性[J]. 生物多样性, 2015, 23(5): 649-657.
[15] 周伟, 王红. 基于DNA分子标记的花粉流动态分析[J]. 生物多样性, 2014, 22(1): 97-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed