生物多样性 ›› 2019, Vol. 27 ›› Issue (2): 200-210.doi: 10.17520/biods.2019012

• 研究报告 • 上一篇    下一篇

烟台牟平海洋牧场季节性低氧对大型底栖动物群落的生态效应

杨陆飞1, 2, 陈琳琳2, 李晓静2, 周政权2, 刘博1, 2, 宋博1, 2, 李秉钧1, *(), 李宝泉2, *()   

  1. 1 烟台大学海洋学院, 山东烟台 264003
    2 中国科学院烟台海岸带研究所海岸带生物学与生物资源保护实验室, 山东烟台 264003
  • 收稿日期:2019-01-16 接受日期:2019-02-26 出版日期:2019-02-20
  • 通讯作者: 李秉钧,李宝泉 E-mail:Li6234307@163.com;bqli@yic.ac.cn
  • 基金项目:
    中国科学院战略性先导科技专项(XDA11020403);中国科学院战略性先导科技专项(XDA11020702);美丽中国生态文明建设科技工程专项(XDA23050304);美丽中国生态文明建设科技工程专项(XDA23050202);中国科学院特别交流项目

Effect of seasonal hypoxia on macrobenthic communities in the Muping Marine Ranch, Yantai, China

Yang Lufei1, 2, Chen Linlin2, Li Xiaojing2, Zhou Zhengquan2, Liu Bo1, 2, Song Bo1, 2, Li Bingjun1, *(), Li Baoquan2, *()   

  1. 1 School of Ocean, Yantai University, Yantai, Shandong 264003
    2 Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003
  • Received:2019-01-16 Accepted:2019-02-26 Online:2019-02-20
  • Contact: Li Bingjun,Li Baoquan E-mail:Li6234307@163.com;bqli@yic.ac.cn

由于气候变化和人类活动的影响, 世界许多海区尤其是近岸海区发生了不同程度的低氧现象, 导致海洋动物大量死亡, 对海洋生态系统产生了不同程度的影响。为明确烟台牟平海洋牧场低氧对大型底栖动物的生态效应, 我们于2016年夏季(6月、8月、9月共3个航次)在该海域进行现场调查, 分析低氧对大型底栖动物群落时空变化的影响。结果表明: 牟平海洋牧场8月低氧事件发生时, 大型底栖动物群落的优势种为短叶索沙蚕(Lumbrinereis latreilli)、不倒翁虫(Sternaspis scutata)和内肋蛤(Endopleura lubrica)。低氧在一定程度上改变了大型底栖动物的群落结构, 表现为物种组成和优势种变化上。例如, 耐受低氧的机会种数量增加, 如短叶索沙蚕; 敏感种数量减少, 如微小海螂(Leptomya minuta)、长吻沙蚕(Glycera chirori)、大蝼蛄虾(Upogebia major)、极地蚤钩虾(Pontocrates altamarimus)、塞切尔泥钩虾(Eriopisella sechellensis)等。同时, 低氧也导致了物种多样性的降低, 但丰度和生物量受其影响不明显, 这主要是由于机会种短叶索沙蚕丰度和生物量的剧增所致。大型底栖动物不同物种耐受低氧的阈值不同。例如, 短叶索沙蚕在溶解氧(DO) < 1.0 mg/L受影响最大, 在DO = 2.0 mg/L时受到的影响不明显, 而其他敏感种如微小海螂、大蝼蛄虾、极地蚤钩虾、塞切尔泥钩虾等在DO < 2.5 mg/L时, 已表现出明显的不适。低氧事件之后, 大型底栖动物群落得到一定程度的恢复, 其恢复程度和需要的时间长短与低氧发生的程度有关。

关键词: 低氧, 群落结构, 群落恢复, 敏感种, 机会种

Hypoxia is a common phenomenon in the world’s oceans, especially in the shallow waters of coastal zones. Rates of hypoxia are increasing due to global climatic changes and anthropogenic activities. Hypoxia can cause mass mortality of marine animals and can have severe negative impacts on marine ecosystems. To better understand the effects of hypoxia on macrobenthic communities, a survey was carried out in the Muping Marine Ranch (Yantai) during June, August and September of 2016. Results showed that seasonal hypoxia led to changes in benthic community structure, especially in terms of species composition and dominant species. The dominant species were Polychaeta Lumbrinereis latreilli, Sternaspis scutata and Mollusca Endopleura lubrica in summer. The opportunistic species Lumbrinereis latreilli increased, whereas, sensitive species such as Leptomya minuta, Glycera chirori, Upogebia major, Pontocrates altamarimus, Eriopisella sechellensis decreased during the hypoxic period of August. Hypoxia also reduced biodiversity indices. The effect of hypoxia on abundance and biomass were not significant, mainly because of the increase in the opportunistic Lumbrinereis latreilli, which counteracted the decline in abundance and biomass of other species. Individual physiological tolerance to hypoxia was different among species. Lumbrinereis latreilli showed higher tolerance to hypoxia in dissolved oxygen (DO) = 1.0 mg/L compared to other species. Some sensitive species, such as Leptomya minuta, Upogebia major, Pontocrates altamarimus and Eriopisella sechellensis showed lower tolerance when DO < 2.5 mg/L. When DO increased to 2.5 mg/L, the macrobenthic community start to recover gradually. The recovery extent and time needed were closely related to the degree of seasonal hypoxia.

Key words: hypoxia, community structure, community recovery, sensitive species, opportunistic species

图1

烟台牟平海洋牧场2016年夏季大型底栖动物调查站位及低氧分区。★ 低氧区; ■ 低氧边缘区;▲ 养殖区; ● 外海区。"

表1

烟台牟平海洋牧场2016年夏季底层水溶解氧值(mg/L)"

站位
Station
6月
June
8月
August
9月
September
站位
Station
6月
June
8月
August
9月
September
站位
Station
6月
June
8月
August
9月
September
2 5.20 4.25 4.24 17 6.68 2.54 3.78 S1 7.77 2.73 3.62
3 6.44 2.00 4.23 18 6.96 2.96 4.04 S4 7.13 3.39 3.53
5 7.43 3.30 4.38 19 6.96 3.23 4.74 S6 7.08 3.26 -
7 4.43 1.02 4.15 21 7.26 3.59 7.79 S8 7.71 3.56 -
9 6.36 2.50 8.28 23 7.11 2.71 7.33 S10 7.05 3.18 -
11 6.41 5.99 4.22 29 7.45 3.04 4.42 S11 7.15 3.74 3.65
13 4.93 2.03 3.94 C3 5.93 3.54 4.51 S12 6.72 2.63 5.10
14 5.28 2.25 4.19 Y3 5.68 3.84 4.04 平均值 Average 6.56 3.25 4.78
16 7.53 8.02 6.97 Y5 5.29 1.95 3.93

表2

烟台牟平海洋牧场2016年夏季低氧区大型底栖动物群落组成"

物种数 Species number (%)
6月 June 8月 August 9月 September
多毛类 Polychaeta 23(67.6) 21(63.6) 25(62.5)
甲壳类 Crustacea 5(14.7) 4(12.1) 6(15)
软体动物 Mollusca 4(11.8) 6(18.2) 6(15)
棘皮动物 Echinodermata 1(2.9) - 2(5)
其他 Others 1(2.9) 2(6.1) 1(2.5)
总计 Total 34(100) 33(100) 40(100)

表3

烟台牟平海洋牧场2016年8月不同海区大型底栖动物群落组成"

物种数 Species number (%)
低氧区
Hypoxic
zone
低氧边缘区
Marginal area of hypoxic zone
养殖区
Aquaculture zone
外海区
Offshore zone
多毛类 Polychaeta 21(63.6) 20(52.6) 31(55.4) 18(50)
甲壳类 Crustacea 4(12.1) 7(18.4) 11(19.6) 8(22.2)
软体动物 Mollusca 6(18.2) 8(21.1) 10(17.9) 8(22.2)
棘皮动物 Echinodermata - 2(5.3) 3(5.4) 1(2.8)
其他 Others 2(6.1) 1(2.6) 1(1.8) 1(2.8)
总计 Total 33(100) 38(100) 56(100) 36(100)

表4

烟台牟平海洋牧场2016年夏季不同海区大型底栖动物丰度和生物量"

月份
Month
低氧区
Hypoxic zone
低氧边缘区
Marginal area of hypoxic zone
养殖区
Aquaculture zone
外海区
Offshore zone
总计
Total
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
6 2,183.33 5.84 2,573.33 10.31 853.33 9.69 855.83 5.71 1,500.3 7.41
8 2,102.22 12.16 1,645.33 5.01 496.67 5.02 444.17 2.92 1,094.9 6.06
9 1,216.67 7.96 1,972 4.79 595 2.16 533.33 13.62 999.97 7.75

表5

烟台牟平海洋牧场2016年8月不同海区丰度和生物量组成"

低氧区
Hypoxic zone
低氧边缘区
Marginal area of hypoxic zone
养殖区
Aquaculture zone
外海区
Offshore zone
丰度
Abundance
(ind./m2)
生物量
Biomass (g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
丰度
Abundance
(ind./m2)
生物量
Biomass
(g/m2)
多毛类 Polychaeta 1,933.33 6.96 1,048 3.45 397.78 3.66 270.83 1.56
甲壳类 Crustacea 16.67 2.31 44 0.33 24.44 0.61 17.50 0.085
软体动物 Mollusca 147.78 0.55 542.67 1.02 68.89 0.27 153.33 1.20
棘皮动物 Echinodermata - - 5.33 0.06 4.44 0.39 1.67 0.049
其他 Others 4.45 2.34 5.33 0.15 1.11 0.09 0.83 0.018

图2

烟台牟平海洋牧场2016年8月大型底栖动物丰度(a, ind./m2)和生物量(b, g/m2)空间分布"

图3

烟台牟平海洋牧场2016年8月不同海区大型底栖动物群落多样性指数"

图4

烟台牟平海洋牧场低氧区大型底栖动物非度量多维尺度分析。“6-3”表示6月份的3号站位, 以此类推。"

图5

烟台牟平海洋牧场夏季低氧区大型底栖动物丰度(丰度与圆圈直径成正比)。P: 多毛类; C: 甲壳类; M: 软体动物; E: 棘皮动物; O: 其他动物。"

[1] Baustian MM, Rabalais NN ( 2009) Seasonal composition of benthic macroinfauna exposed to hypoxia in the northern gulf of Mexico. Estuaries and Coasts, 32, 975-983.
doi: 10.1007/s12237-009-9187-3
[2] Briggs KB, Cartwright G, Friedrichs CT, Shivarudruppa S ( 2015) Biogenic effects on cohesive sediment erodibility resulting from recurring seasonal hypoxia on the Louisiana shelf. Continental Shelf Research, 93, 17-26.
doi: 10.1016/j.csr.2014.11.005
[3] Chen YQ, Xu ZL, Wang YL ( 1995) An ecological study on zooplankton in plume front zone of Changjiang (Yangtze) River estuarine area. I. Biomass distribution of dominant species. Journal of Fishery Sciences of China, 2, 49-58. (in Chinese with English abstract)
[ 陈亚瞿, 徐兆礼, 王云龙 ( 1995) 长江口河口锋区浮游动物生态研究. I. 生物量及优势种的平面分布. 中国水产科学, 2, 49-58.]
[4] Chi LB, Song XX, Yuan YQ, Wang WT, Zhou P, Fan X, Cao XH, Yu ZM ( 2017) Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China. Marine Pollution Bulletin, 125, 440-450.
doi: 10.1016/j.marpolbul.2017.09.063 pmid: 29029983
[5] Chu JWF, Tunnicliffe V ( 2015) Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia. Global Change Biology, 21, 2989-3004.
doi: 10.1111/gcb.12898 pmid: 25689932
[6] Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F ( 2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science & Technology, 36, 5315-5320.
doi: 10.1021/es025763w pmid: 12521155
[7] Dauer DM ( 1993) Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin, 26, 249-257.
doi: 10.1016/0025-326X(93)90063-P
[8] Diaz RJ ( 2001) Overview of hypoxia around the world. Journal of Environment Quality, 30, 275-281.
doi: 10.2134/jeq2001.302275x
[9] Diaz RJ, Rosenberg R ( 1995) Marine benthic hypoxia: A review of its ecological effects and the behavioural response of benthic macrofauna. Oceanography and Marine Biology, 33, 245-303.
[10] Diaz RJ, Rosenberg R ( 2008) Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929.
doi: 10.1126/science.1156401
[11] Gong SB, Gao AG, Ni GT, Zhu XX, Zhang YP, Hou YT ( 2017) Progress in research of hypoxia in estuaries and coastal areas in China. Water Resources Protection, 33(4), 62-69. (in Chinese with English abstract)
doi: 10.3880/j.issn.1004-6933.2017.04.010
[ 龚松柏, 高爱国, 倪冠韬, 朱旭旭, 张延颇, 侯昱廷 ( 2017) 中国部分河口及其近海水域缺氧现象研究. 水资源保护, 33(4), 62-69.]
doi: 10.3880/j.issn.1004-6933.2017.04.010
[12] Gooday AJ, Levin LA, Silva AAD, Bett BJ, Cowie GL ( 2009) Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research II: Topical Studies in Oceanography, 56, 488-502.
[13] Gray JS, Wu RSS, Ying Y ( 2002) Effects of hypoxia and organic enrichment on the marine environment. Marine Ecology Progress, 238, 249-279.
doi: 10.3354/meps238249
[14] Gu XL, Xu ZL ( 2009) A review on the effects of hypoxia on aquatic animals in estuaries. Marine Fisheries, 31, 426-437. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-2490.2009.04.013
[ 顾孝连, 徐兆礼 ( 2009) 河口及近岸海域低氧环境对水生动物的影响. 海洋渔业, 31, 426-437.]
doi: 10.3969/j.issn.1004-2490.2009.04.013
[15] Li DJ, Zhang J, Wu Y, Liang J, Huang DJ ( 2002) Loss of oxygen outside the Changjiang Estuary. Science in China, 32, 686-694. (in Chinese)
doi: 10.3321/j.issn:1006-9267.2002.08.009
[ 李道季, 张经, 吴莹, 梁俊, 黄大吉 ( 2002) 长江口外氧的亏损. 中国科学, 32, 686-694.]
doi: 10.3321/j.issn:1006-9267.2002.08.009
[16] Li XZ, Liu LS, Li BQ ( 2010) The Macrobenthic Assemblages in China: Research and Practice. China Ocean Press, Beijing. (in Chinese)
[ 李新正, 刘录三, 李宝泉 ( 2010) 中国海洋大型底栖生物: 研究与实践. 海洋出版社, 北京.]
[17] Li YY, Wang ZM ( 2006) The relation among dissolution oxygen (DO) to COD, inorganic nitrogen, reactive phosphate and primary yield-power in the Liaodong Gulf and seaport of Daliaohe. Environmental Monitoring in China, 22(3), 70-72. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6002.2006.03.023
[ 李艳云, 王作敏 ( 2006) 大辽河口和辽东湾海域水质溶解氧与COD、无机氮、磷及初级生产力的关系. 中国环境监测, 22(3), 70-72.]
doi: 10.3969/j.issn.1002-6002.2006.03.023
[18] Liu HX ( 2012) Study on main influencing factors of formation and deterioration of summer hypoxia off the Yangtze River Estuary. Advance in Marine Science, 30, 186-197. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-6647.2012.02.004
[ 刘海霞 ( 2012) 长江口夏季低氧区形成及加剧的成因分析. 海洋科学进展, 30, 186-197.]
doi: 10.3969/j.issn.1671-6647.2012.02.004
[19] Luo L, Li SY, Wang DX ( 2008) Modelling of hypoxia in the Pearl River Estuary in summer. Advances in Water Science, 19, 729-735. (in Chinese with English abstract)
[ 罗琳, 李适宇, 王东晓 ( 2008) 珠江河口夏季缺氧现象的模拟. 水科学进展, 19, 729-735.]
[20] Margalef R ( 1968) Perspectives in Ecological Theory. University of Chicago Press, Chicago.
[21] Meng CX, Deng CM, Yao P, Zhang XQ, Mi TZ, Chen HT, Yu ZG ( 2005) Dissolved oxygen in the Xiaoqinghe Estuary and adjacent waters. Marine Environmental Science, 24(3), 25-28. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6336.2005.03.007
[ 孟春霞, 邓春梅, 姚鹏, 张欣泉, 米铁柱, 陈洪涛, 于志刚 ( 2005) 小清河口及邻近海域的溶解氧. 海洋环境科学, 24(3), 25-28.]
doi: 10.3969/j.issn.1007-6336.2005.03.007
[22] Nilsson HC, Rosenberg R ( 1994) Hypoxic response of two marine benthic communities. Marine Ecology Progress, 115, 209-217.
doi: 10.3354/meps115209
[23] Pielou EC ( 1975) Ecology Diversity. Wiley-Inters, New York.
[24] Ran XB, Zang JY, Wei QS, Guo JS, Yin XF, Liu W, Liu J ( 2012) Hypoxia and its cause of formation in the adjacent waters of Rushan Bay. Advances in Marine Science, 30, 347-356. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-6647.2012.03.005
[ 冉祥滨, 臧家业, 韦钦胜, 郭景松, 尹晓斐, 刘玮, 刘军 ( 2012) 乳山湾邻近海域低氧现象及成因浅析. 海洋科学进展, 30, 347-356.]
doi: 10.3969/j.issn.1671-6647.2012.03.005
[25] Shannon CE, Weaver W ( 1949) The Mathematical Theory of Communication. University of Illinois Press, Urbanna.
[26] Stachowitsch M ( 1991) Anoxia in the Northern Adriatic Sea: Rapid death, slow recovery. Modern & Ancient Continental Shelf Anoxia, 58, 119-129.
doi: 10.1144/GSL.SP.1991.058.01.09
[27] Steckbauer A, Duarte CM, Carstensen J, Vaquer-Sunyer R, Conley DJ ( 2011) Ecosystem impacts of hypoxia: Thresholds of hypoxia and pathways to recovery. Environmental Research Letters, 6, 025003.
doi: 10.1088/1748-9326/6/2/025003
[28] Sturdivant SK, Seitz RD, Diaz RJ ( 2013) Effects of seasonal hypoxia on macrobenthic production and function in the Rappahannock River, Virginia, USA. Marine Ecology Progress Series, 490, 53-68.
doi: 10.3354/meps10470
[29] Vaquer-Sunyer R, Duarte CM ( 2008) Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, USA, 105, 15452-15457.
doi: 10.1073/pnas.0803833105
[30] Wang QC, Li BQ ( 2013) Community structure of macrobenthos in coastal water off Yantai, East China. Oceanologia et Limnologia Sinica, 44, 1667-1680. (in Chinese with English abstract)
doi: 10.11693/hyhz20130300003
[ 王全超, 李宝泉 ( 2013) 烟台近海大型底栖动物群落特征. 海洋与湖沼, 44, 1667-1680.]
doi: 10.11693/hyhz20130300003
[31] Wang QN, Yan T, Zhou MJ ( 2012) Research progress on cause of hypoxia and its influence in coastal and estuary region. Marine Environmental Science, 31, 775-778. (in Chinese with English abstract)
[ 王巧宁, 颜天, 周名江 ( 2012) 近岸和河口低氧成因及其影响的研究进展. 海洋环境科学, 31, 775-778.]
[32] Wang YM, Li DJ, Fang T, Liu ZG, He SQ ( 2008) Study on relation of distribution of benthos and hypoxia in Yangtze River Estuary and adjacent sea. Marine Environmental Science, 27(2), 41-66. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6336.2008.02.010
[ 王延明, 李道季, 方涛, 刘志刚, 何松琴 ( 2008) 长江口及邻近海域底栖生物分布及与低氧区的关系研究. 海洋环境科学, 27(2), 41-66.]
doi: 10.3969/j.issn.1007-6336.2008.02.010
[33] Wu RSS ( 2002) Hypoxia: From molecular responses to ecosystem responses. Marine Pollution Bulletin, 45, 35-45.
doi: 10.1016/S0025-326X(02)00061-9 pmid: 12398365
[34] Yang D, Zhou ZQ, Zhang JS, Liu TT, Li XJ, Ai BH, Li BQ, Chen LL ( 2017) Characteristics of macrobenthic communities at the Muping Marine Ranch of Yantai in summer. Marine Sciences, 41(5), 136-145. (in Chinese with English abstract)
doi: 10.11759//hykx20170315002
[ 杨东, 周政权, 张建设, 刘甜甜, 李晓静, 艾冰花, 李宝泉, 陈琳琳 ( 2017) 烟台牟平海洋牧场夏季大型底栖动物群落特征. 海洋科学, 41(5), 136-145.]
doi: 10.11759//hykx20170315002
[35] Ye F, Huang XP ( 2010) The status, causes, and ecological effects of coastal hypoxia. Transactions of Oceanology and Limnology, ( 3), 91-99. (in Chinese with English abstract)
[ 叶丰, 黄小平 ( 2010) 近岸海域缺氧现状、成因及其生态效应. 海洋湖沼通报, ( 3), 91-99.]
[36] Zhang YY, Zhang J, Wu Y, Zhu ZY ( 2007) Characteristics of dissolved oxygen and its affecting factors in the Yangtze Estuary. Environmental Science, 28, 1649-1654. (in Chinese with English abstract)
[ 张莹莹, 张经, 吴莹, 朱卓毅 ( 2007) 长江口溶解氧的分布特征及影响因素研究. 环境科学, 28, 1649-1654.]
[1] 赵志霞,赵常明,邓舒雨,申国珍,谢宗强,熊高明,李俊清. (2020) 重度砍伐后极小种群野生植物崖柏群落结构动态. 生物多样性, 28(3): 333-339.
[2] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[3] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[4] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[5] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. (2019) 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征. 生物多样性, 27(4): 439-448.
[6] 刘硕然,杨道德,李先福,谭路,孙军,和晓阳,杨文书,任国鹏,Davide Fornacca,蔡庆华,肖文. (2019) 滇西北高山微水体与溪流生境底栖动物多样性和环境特征. 生物多样性, 27(12): 1298-1308.
[7] 周细平, 李贞, 吴培芳, 吴茜, 陈逸欣, 刘康格, 刘东艳, 王玉珏, 王跃启. (2019) 珠江河口区大型底栖动物群落结构. 生物多样性, 27(10): 1112-1121.
[8] 秦运芝, 张佳鑫, 刘检明, 刘梦婷, 万丹, 吴浩, 周阳, 孟红杰, 肖之强, 黄汉东, 徐耀粘, 卢志军, 乔秀娟, 江明喜. (2018) 湖南八大公山25 ha常绿落叶阔叶混交林动态监测样地群落组成与空间结构. 生物多样性, 26(9): 1016-1022.
[9] 莫畏, 王志良, 李猷, 郭建军, 张润志. (2018) 北京近郊深土层动物群落结构特征. 生物多样性, 26(3): 248-257.
[10] 张俪文, 韩广轩. (2018) 植物遗传多样性与生态系统功能关系的研究进展. 植物生态学报, 42(10): 977-989.
[11] 李宇航, 陈万东, 蔡厚才, 孙忠民, 徐奎栋. (2017) 南麂列岛砂质潮间带底栖硅藻多样性与群落结构的时空变化. 生物多样性, 25(9): 981-989.
[12] 谭凌照, 范春雨, 范秀华. (2017) 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 41(11): 1149-1156.
[13] 周红英, 姚雪梅, 黎李, 耿涛年, 张颖. (2017) 海南岛周边海域造礁石珊瑚的群落结构及其分布. 生物多样性, 25(10): 1123-1130.
[14] 方全, 刘以珍, 葛刚. (2016) 鄱阳湖流域含珍稀针叶树种的群落特征. 植物生态学报, 40(9): 952-957.
[15] 刘鸿雁, 杨超杰, 张沛东, 李文涛, 杨晓龙, 张秀梅. (2016) 青岛崂山湾人工鱼礁区底层游泳动物群落结构特征. 生物多样性, 24(8): 896-906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed