生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 545-553.doi: 10.17520/biods.2017320

• 研究报告 • 上一篇    下一篇

浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性

吴初平1, 韩文娟2, 江波1, 刘博文3, 袁位高1, 沈爱华1, *(), 黄玉洁1, 朱锦茹1   

  1. 1 浙江省林业科学研究院, 杭州 310023
    2 浙江师范大学化学与生命科学学院, 浙江金华 321000
    3 浙江省舟山市定海区农林与海洋渔业局, 浙江定海 316100
  • 收稿日期:2017-12-01 接受日期:2018-04-02 出版日期:2018-06-20
  • 通讯作者: 沈爱华 E-mail:mailahshen@126.com
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    浙江省重大科技专项重点农业项目(2015C02016)和浙江省自然科学基金青年基金(LQ18C030001)

Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province

Chuping Wu1, Wenjuan Han2, Bo Jiang1, Bowen Liu3, Weigao Yuan1, Aihua Shen1, *(), Yujie Huang1, Jinru Zhu1   

  1. 1 Zhejiang Academy of Forestry, Hangzhou 310023
    2 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321000
    3 Ministry of Agriculture, Forestry and Fisheries of Dinghai District, Zhoushan City, Zhejiang Province, Dinghai, Zhejiang 316100
  • Received:2017-12-01 Accepted:2018-04-02 Online:2018-06-20
  • Contact: Shen Aihua E-mail:mailahshen@126.com
  • About author:

    # Co-first authors

迄今生物多样性与生态系统功能关系的研究主要在物种组成随机配置的人工生态系统中进行, 在自然生态系统中研究较少, 且未考虑环境因子如何影响生态系统功能及其与生物多样性的关系。本研究选取亚热带广泛分布的次生林为研究对象, 利用模型拟合的方法, 探讨亚热带次生林中物种丰富度与生物量和生产力之间的关系, 以及环境因子(海拔、坡度、坡向、土层厚度)和次生林恢复时间(林龄)对生物量、生产力、物种丰富度与生物量和生产力间关系的影响。结果表明, 当不考虑环境因子时, 物种丰富度与生物量之间存在显著的线性正相关关系, 而与生产力之间存在显著的二次关系(先增加后减少的驼峰型)。当考虑环境因子时, 个体密度和土层厚度对生物量具有显著影响, 而环境因子对生产力并无显著效应。在坡度较陡、坡向朝南及土层较厚的环境条件下, 物种丰富度与生物量具有显著的线性正相关关系; 而在坡度较缓、坡向朝北及土层较薄的环境条件下, 物种丰富度不影响生物量。在较高海拔环境条件下, 生产力随物种丰富度先增加后减少(驼峰形状), 而在其他环境条件下, 生产力均不响应物种丰富度。以上结果说明自然森林生态系统中物种丰富度与生物量和生产力的关系存在差异, 且其相互间的关系依赖于环境因子。

关键词: 生物多样性, 生态系统功能, 亚热带次生林, 环境因子, 浙江

Experimental studies of the relationship between biodiversity and ecosystem functioning (BEF) have mainly been conducted in artificial ecosystems with randomly assembled species, highlighting the need of testing this relationship in real world. In particular, these studies did not consider the effects of environmental factors on the relationship between biodiversity and ecosystem functioning. Hence, we used secondary forests, which are widely distributed in the subtropics, as research objects. We used model fitting methods to study the relationship between species richness and biomass/productivity. Meanwhile, we also explored the effects of environmental factors (e.g., elevation, aspect, slope, and soil depth) on biomass and productivity and on BEF relationships. Our results showed that there was a significant linear correlation between species richness and biomass, and a quartic correlation between species richness and productivity (i.e., humped curve) when environmental factors were not considered. Considering that biomass was significantly affected by stem density and soil depth, while productivity was not affected by environmental factors, we found that only under the environmental conditions characterized by steep slopes, south aspects, or higher soil depths, was species richness significantly correlated with biomass. The relationship between species richness and productivity showed a significant quadratic correlation under higher elevation, but not under any other environmental conditions. These results suggest that the relationship between species richness and productivity is different from the relationship between species richness and biomass, and both these relationships depend on environmental factors.

Key words: biodiversity, ecosystem functioning, subtropical forest, environmental gradient, Zhejiang

表1

物种丰富度与生物量及生产力间的最优模型分析"

模型 Models F R2 P AICc
BIO~S 5.436 0.110 0.02 818.941
BIO~ S + S 2 2.700 0.116 0.07 821.261
∆BIO~S 0.545 0.012 0.46 -34.944
∆BIO ~ S + S 2 3.075 0.125 0.05 -38.123

图1

物种丰富度与群落生物量(a)和生产力(b)之间的关系。其中(a)生物量指研究样方20 m × 20 m中2015年所调查个体生物量的总和; (b)生产力指研究样方中2012年和2015年两次调查生物量的比值。虚线为95%置信区间, 实线为表1中具有最低AICc值的模型。"

表2

显著影响生物量及生产力的环境和群落因子"

估计值 Estimate 标准误 SE t P
生物量
Biomass (BIO)
截距 Intercept 8.141 0.073 111.036 < 0.001
个体密度 Density (ind./ha) 0.221 0.076 2.900 < 0.01
土壤厚度 Soil depth (cm) 0.136 0.075 1.815 0.07
物种丰富度 Species richness 0.126 0.076 1.646 0.10
生产力
Productivity (∆BIO)
截距 Intercept 0.147 0.020 7.665 < 0.001
物种丰富度 Species richness 0.265 0.103 2.590 < 0.05
物种丰富度的平方 Square of species richness -0.249 0.102 -2.434 < 0.05

图2

不同环境条件下生物量和生产力的差异。其中生物量指研究样方20 m × 20 m中2015年所调查个体生物量的总和; 生产力指研究样方中2012和2015年两次调查生物量的比值。"

表3

不同环境条件下物种丰富度与生物量和生产力的关系"

范围
Ranges
样方数
No. of plots
功能变量
Functions
一次方程
Linear equation
R2 二次方程
Quadratic equation
R2 ΔAICc
BIC AICc Sig. BIC AICc Sig.
海拔
Elevation (m)
≤ 65 23 BIO 423.583 421.439 + 0.07 426.317 423.997 +, - 0.08 2.558
∆BIO -3.744 -5.887 + 0.02 -3.257 -5.577 +, - 0.12 0.310
> 65 23 BIO 403.055 400.912 + 0.20* 405.131 402.811 -, + 0.23# 1.899
∆BIO -23.754 -25.897 + 0.02 -26.458 -28.778 +, - 0.24# -2.881
坡度
Slope
≤ 20° 33 BIO 596.410 592.748 + 0.01 598.983 594.426 +, - 004 1.678
∆BIO -15.746 -19.408 + 0.03 -14.324 -18.882 +, - 0.09 0.526
> 20° 13 BIO 227.108 228.079 + 0.59** 227.930 230.671 -, + 0.64** 2.592
∆BIO -10.178 -9.206 + 0.01 -11.306 -8.566 +, - 0.24 0.640
坡向
Aspect
南、西南
South, Southwest
21 BIO 370.428 368.706 + 0.19* 371.462 369.784 -, + 0.26# 1.078
西、东南
West, Southeast
∆BIO -25.380 -27.102 + 0.01 -26.650 -28.328 +, - 0.19 -1.226
东、东北
East, Northeast
25 BIO 456.261 453.747 + 0.07 457.746 454.871 +, - 0.14 1.124
北、西北
North, Northwest
∆BIO -4.620 -7.133 + 0.02 -3.648 -6.524 +, - 0.10 0.609
土层厚度
Soil depth
(cm)
< 40 26 BIO 454.222 451.539 + 0.01 457.463 454.335 +, - 0.01 2.996
∆BIO -14.875 -17.559 + 0.04 -11.992 -15.119 +, - 0.06 2.440
≥ 40 20 BIO 367.197 365.710 + 0.14# 369.428 368.112 +, - 0.17 2.402
∆BIO -12.855 -14.342 + 0.03 -13.070 -14.386 +, - 0.17 -0.044
林龄
Forest age
≤ 15 22 BIO 404.116 402.176 + 0.05 406.959 404.948 -, + 0.06 2.772
∆BIO -13.638 -15.578 - 0.01 -14.995 -17.006 +, - 0.14 -1.428
> 15 24 BIO 422.094 419.760 + 0.20* 425.249 422.642 -, + 0.20# 2.882
∆BIO -9.905 -12.239 + 0.02 -8.569 -11.176 +, - 0.09 1.063
[1] Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology & Management, 401, 125-134.
[2] Barrufol M, Schmid B, Bruelheide H, Chi XL, Hector A, Ma KP, Michalski S, Tang ZY, Niklaus PA (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE, 8, e81246.
[3] Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89.
[4] Burnham KP, Anderson DR (2010) Model Selection and Multi-model Inference: A Practical Information Theoretic Approach. Springer, New York.
[5] Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecological Research, 16, 895-903.
[6] Cavanaugh KC, Gosnell JS, Davis SL, Davis JS, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology Biogeography, 23, 563-573.
[7] Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4, e5695.
[8] Corlett RT (2013) Where are the subtropics? Biotropica, 45, 273-275.
[9] Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7, 437-444.
[10] Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HA, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305.
[11] Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, USA, 105, 6087-6090.
[12] Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate Data Analysis, 5th edn. Prentice Hall, New Jersey.
[13] Hautier Y, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
[14] He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)
[贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?植物生态学报, 27, 835-843.]
[15] Hortal J, Triantis KA, Meiri S, Sfenthourakis S (2009) Island species richness increases with habitat diversity. The American Naturalist, 174, E205.
[16] Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang AN, Li Y, Haerdtle W, von Oheimb G, Yang XF, Pei KQ, Both S, Liu XJ, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hoenig L, Hu RY, Klein, AM, Kuehn P, Liang Y, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZH, Welk E, Wirth C, Wubet T, Xiang WH, Yan JY, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2017) Strong positive biodiversity-productivity relationships in a subtropical forest experiment. bioRxiv, doi: https://doi.org/10.1101/206722.
[17] Jiang L, Wan S, Li L (2009) Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 97, 603-608.
[18] Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167.
[19] Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brand S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Worte V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957.
[20] Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
[21] Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 247-248. (in Chinese)
[马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 247-248.]
[22] Ma KP, He JS, Bruelheide H, Klein AM, Liu XJ, Schmid B (2017) Biodiversity-ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 10, 1-3.
[23] Mori AS, Osono T, Cornelissen JHC, Craine J, Uchida M (2017) Biodiversity-ecosystem function relationships change through primary succession. Oikos, 126, 1637-1649.
[24] Ouyang S, Xiang W, Wang XP, Zeng YL, Lei PF, Deng XW, Peng CH (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. Forest Ecology and Management, 372, 291-302.
[25] Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
[26] Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology Biogeography, 20, 170-180.
[27] Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132, 263-280.
[28] Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias C, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud S, Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426.
[29] Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn D, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589-592.
[30] Schmid B, Balvanera P, Cardinale BJ, Godbold J, Pfisterer AB, Raffaelli D, Solan M, Srivastava DS (2009) Consequences of species loss for ecosystem functioning: Meta-analyses of data from biodiversity experiments. In: Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds Naeem S, Bunker DE, Hector A, Loreau M, Perrings C), pp. 14-29. Oxford University Press, Oxford.
[31] Shi L, Liu SR (2017) Methods of estimating forest biomass: A review. In: Biomass Volume Estimation and Valorization for Energy (ed. Tumuluru JS). InTech.
[32] Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648.
[33] Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society of London B: Biological Sciences, 278, 877-884.
[34] Tan SS, Wang RR, Gong XL, Cai JY, Shen GC (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. (in Chinese with English abstract)
[谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064. ]
[35] Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
[36] Tilman D, Reich PB, Knops J, Wedin DA, Mielke T (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
[37] van der Sande MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L, Hector A (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 105, 1223-1234.
[38] Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton, New Jersey.
[39] Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, Myers-Smith IH, Sax DF (2017) Plant biodiversity change across scales during the anthropocene. Annual Review of Plant Biology, 68, 563-586.
[40] Wacker L, Baudois O, Eichenberger-Glinz, Schmid B (2008) Environmental heterogeneity increases complementarity in experimental grassland communities. Basic and Applied Ecology, 9, 467-474.
[41] Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27, 646-653.
[42] Willig MR (2011) Biodiversity and productivity. Science, 333, 1709-1710.
[43] Wu X, Wang XP, Tang ZY, Shen ZH, Zheng CY, Xia XL, Fang JY (2015) The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38, 602-613.
[44] Yan ER, Wang XH, Huang JJ (2006) Shifts in plant nutrient use strategies under secondary forest succession. Plant & Soil, 289, 187-197.
[45] Yang B (2014) Key Factors Affecting the Relationship Between Forest Biodiversity and Ecosystem Function in Subtropical China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)
[杨波 (2014) 影响亚热带森林生物多样性与生态系统功能关系的关键因子研究. 博士学位论文, 中国科学院植物研究所, 北京.]
[46] Zhang QG, Zhang DY (2002) Biodiversity and ecosystem functioning: Recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract)
[张全国, 张大勇 (2002) 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.]
[1] 黄林韬 黄晖 江雷. (2020) 中国造礁石珊瑚分类厘定. 生物多样性, 28(4): 515-523.
[2] 刘海鸥,张风春,赵富伟,杜乐山,薛达元. (2020) 从《生物多样性公约》资金机制战略目标变迁解析生物多样性热点问题. 生物多样性, 28(2): 244-252.
[3] 王剀,任金龙,陈宏满,吕植桐,郭宪光,蒋珂,陈进民,李家堂,郭鹏,王英永,车静. (2020) 中国两栖、爬行动物更新名录. 生物多样性, 28(2): 189-218.
[4] 马亦生,马青青,何念军,朱大鹏,赵凯辉,刘红彩,李帅,孙亮,唐流斌. (2020) 基于红外相机技术调查佛坪国家级自然保护区兽类和鸟类多样性. 生物多样性, 28(2): 226-230.
[5] 耿宜佳,田瑜,李俊生,徐靖. (2020) “2020年后全球生物多样性框架”进展及展望. 生物多样性, 28(2): 238-243.
[6] 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. (2020) 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 44(1): 33-43.
[7] 李熠,唐志尧,闫昱晶,王科,蔡磊,贺金生,古松,姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例. 生物多样性, 28(1): 99-106.
[8] 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. (2020) 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44(1): 22-32.
[9] 李永民,吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[10] 杨锐,彭钦一,曹越,钟乐,侯姝彧,赵智聪,黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[11] 李顺,邹亮,宫一男,杨海涛,王天明,冯利民,葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[12] 张渊媛. (2019) 生物多样性相关传统知识的国际保护及中国应对策略. 生物多样性, 27(7): 708-715.
[13] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[14] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[15] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed