生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 578-589.doi: 10.17520/biods.2017194

• 研究报告 • 上一篇    下一篇

新疆阿勒泰地区爬行动物区系及多样性海拔分布格局

陶夏秋1, 崔绍朋2, 3, 蒋志刚2, 3, 初红军4, 5, 李娜2, 3, 杨道德1, *(), 李春旺2, 3, *()   

  1. 1 中南林业科技大学野生动植物保护研究所, 长沙 410004
    2 中国科学院动物研究所, 北京 100101
    3 中国科学院大学, 北京 100049
    4 新疆卡拉麦里山有蹄类自然保护区阿勒泰管理站, 新疆阿勒泰 836500
    5 新疆大学资源与环境科学学院, 乌鲁木齐 830046
  • 收稿日期:2018-05-08 接受日期:2018-05-26 出版日期:2018-06-20
  • 通讯作者: 杨道德,李春旺 E-mail:csfuyydd@126.com;licw@ioz.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家科技基础性工作专项(2013FY110300)、国家重点研发计划项目(2016YFC0503304)和国家自然科学基金(31472021)

Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China

Xiaqiu Tao1, Shaopeng Cui2, 3, Zhigang Jiang2, 3, Hongjun Chu4, 5, Na Li2, 3, Daode Yang1, *(), Chunwang Li2, 3, *()   

  1. 1 Wildlife Protection Research Institute, Central South University of Forestry and Technology, Changsha 410004
    2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    3 University of Chinese Academy of Sciences, Beijing 100049
    4 Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, Xinjiang 836500
    5 College of Resources and Environment Science, Xinjiang University, Urumqi 830046
  • Received:2018-05-08 Accepted:2018-05-26 Online:2018-06-20
  • Contact: Yang Daode,Li Chunwang E-mail:csfuyydd@126.com;licw@ioz.ac.cn
  • About author:

    # Co-first authors

中国阿勒泰地区是北半球中纬度地区的特殊区域, 与俄罗斯、哈萨克斯坦、蒙古接壤, 境内有平原、沙漠和山地三大地貌特征。2014-2016年, 我们先后3次对阿勒泰地区爬行动物资源开展了实地调查, 共采集到392号爬行动物标本。经鉴定隶属1目6科16种, 结合文献资料, 共计1目8科23种, 均为古北界物种, 其中中亚型17种, 古北型6种, 表现出中亚亚界与欧洲-西伯利亚亚界间的过渡性质。爬行动物Shannon-Wiener多样性指数、Simpson优势度指数随海拔分布呈带有一个中峰的低海拔高原格局, 在第2海拔段(500-600 m)达到峰值; 均匀度指数总体呈现递增格局, 第15海拔段(1,800-1,900 m)达到最大值; 丰富度则呈现一种波动的递减格局, 峰值在第10海拔段(1,300-1,400 m)。3种环境因子对这种格局的独立解释力较低, 但综合作用的解释力较强, 其中海拔与年均温这两个因子的综合作用对物种多样性影响程度最大。

关键词: 阿勒泰地区, 爬行动物区系, 海拔梯度格局, 物种多样性, 环境因子

The Altay Prefecture in China, which shares international boundaries with Kazakhstan, Mongolia and Russia, is a special area in the mid-latitudes of the Northern Hemisphere. The diverse landform of this area encompasses mountainous terrain, vast plains and desert lands. We conducted three expeditions from 2014 to 2016 to survey reptiles of the Altay Prefecture. We actively searched for reptiles using spotlighting at night. We collected a total of 392 specimens, which we identified as 16 species belonging to six families of the order Squamata. Combined with previous literature, the number of reptile species in this region is now 23 representing eight families of the order Squamata. All these species belong to the Palearctic ecozone, including 17 mid-Asia species versus six Palearctic species. From the geographical view, this region is a transitional zone between Euro-Siberian and Central-Asiatic regions. Next, we assessed how reptile species diversity correlated with elevation, which corresponded with changes in environmental factors in this region. We found that the Shannon-Wiener diversity index and Simpson dominance index showed a pattern of low-elevation plateaus with a mid-elevation peak, the Pielou evenness index showed a pattern of increasing, and the richness showed a pattern of decreasing. The peak values of Simpson dominance index and Shannon-Wiener diversity index were observed in Group 2 (500-600 m). The Pielou evenness index peaked for Group 15 (1,800-1,900 m), and richness peaked for Group 10 (1,300-1,400 m). The three environmental variables (altitude, annual mean temperature and annual precipitation) only weakly explained the observed patterns of diversity, richness and evenness, but their combined explanatory power was stronger. In fact, the combination of altitude and annual mean temperature best explained the observed patterns in diversity, richness and evenness of reptiles in the Altay Prefecture.

Key words: Altay Prefecture, herpetofauna, elevational pattern, species diversity, environmental variables

图1

新疆阿勒泰地区爬行动物调查样区分布示意图"

表1

阿勒泰地区26个样区爬行动物调查结果"

样区
Sample
area
海拔区间
Altitude
range (m)
经纬度
Longitude and
latitude
物种*
Species*
1 1,100-1,200 47.96° N, 88.09° E 捷蜥蜴(2)、极北蝰(2) Lacerta agilis (2), Vipera berus (2)
2 1,300-1,400 47.98° N, 88.21° E 密点麻蜥(3) Eremias multiocellata (3)
3 800-900 47.83° N, 88.14° E 捷蜥蜴(5) Lacerta agilis (5)
4 900-1,000 47.89° N, 88.08° E 快步麻蜥(4) Eremias velox (4)
5 1,100-1,200 46.19° N, 90.86° E 奇台沙蜥(4)、旱地沙蜥(30)、变色沙蜥(2)、密点麻蜥(2) Phrynocephalus grumgrzimailoi (4), Phrynocephalus helioscopus (30), Phrynocephalus versicolor (2), Eremias multiocellata (2)
6 1,200-1,300 46.18° N, 90.76° E 新疆岩蜥(3)、旱地沙蜥(2) Laudakia stoliczkana (3), Phrynocephalus helioscopus (2)
7 500-600 47.69° N, 86.82° E 奇台沙蜥(8)、快步麻蜥(2)、密点麻蜥(4)、捷蜥蜴(2) Phrynocephalus grumgrzimailoi (8), Eremias velox (2), Eremias multiocellata (4), Lacerta agilis (2)
8 400-500 47.84° N, 86.67° E 奇台沙蜥(12) Phrynocephalus grumgrzimailoi (12)
9 400-500 47.86° N, 86.14° E 奇台沙蜥(6)、虫纹麻蜥(1) Phrynocephalus grumgrzimailoi (6), Eremias vermiculata (1)
10 800-900 48.34° N, 86.21° E 捷蜥蜴(8) Lacerta agilis (8)
11 800-900 47.49° N, 86.19° E 捷蜥蜴(6) Lacerta agilis (6)
12 700-800 47.75° N, 87.79° E 捷蜥蜴(4)、黄脊东方蛇(2) Lacerta agilis (4), Orientocoluber spinalis (2)
13 400-500 47.42° N, 87.57° E 旱地沙蜥(6)、敏麻蜥(2) Phrynocephalus helioscopus (6), Eremias arguta (2)
14 600-700 46.55° N, 88.27° E 旱地沙蜥(2)、快步麻蜥(6) Phrynocephalus helioscopus (2), Eremias velox (6)
15 900-1,000 46.70° N, 90.83° E 奇台沙蜥(15)、旱地沙蜥(3) Phrynocephalus grumgrzimailoi (15), Phrynocephalus helioscopus (3)
16 1,200-1,300 45.22° N, 89.54° E 旱地沙蜥(2)、红沙蟒(1) Phrynocephalus helioscopus (2), Eryx miliaris (1)
17 1,300-1,400 45.19° N, 89.17° E 旱地沙蜥(6)、虫纹麻蜥(1)、快步麻蜥(2)、奇台沙蜥(3) Phrynocephalus helioscopus (6), Eremias vermiculata (1), Eremias velox (2), Phrynocephalus grumgrzimailoi (3)
18 900-1,000 45.05° N, 89.28° E 旱地沙蜥(20) Phrynocephalus helioscopus (20)
19 900-1,000 45.28° N, 88.82° E 奇台沙蜥(21) Phrynocephalus grumgrzimailoi (21)
20 900-1,000 47.15° N, 89.35° E 旱地沙蜥(25) Phrynocephalus helioscopus (25)
21 900-1,000 46.63° N, 89.99° E 奇台沙蜥(2)、旱地沙蜥(4) Phrynocephalus grumgrzimailoi (2), Phrynocephalus helioscopus (4)
22 1,700-1,800 49.03° N, 87.43° E 极北蝰(9)、捷蜥蜴(2) Vipera berus (9), Lacerta agilis (2)
23 1,500-1,600 48.99° N, 87.31° E 极北蝰(4)、捷蜥蜴(2)、胎蜥(1) Vipera berus (4), Lacerta agilis (2), Zootoca vivipara (1)
24 1,300-1,400 48.65° N, 86.72° E 敏麻蜥(1)、极北蝰(1)、隐耳漠虎(3) Eremias arguta (1), Vipera berus (1), Alsophylax pipiens (3)
25 500-600 47.56° N, 87.05° E 敏麻蜥(1)、旱地沙蜥(2) Eremias arguta (1), Phrynocephalus helioscopus (2)
26 700-800 48.17° N, 87.14° E 白条锦蛇(1)、旱地沙蜥(3) Elaphe dione (1), Phrynocephalus helioscopus (3)

图2

爬行动物物种多样性随海拔梯度的变化。实点表示观测的物种多样性, 灰色实线为模型预测的物种多样性, 灰色虚线表示模型预测的95%置信区间。"

表2

阿勒泰地区爬行动物多样性指数与不同因子的广义相加模型"

变量 Variables 模型解释力
Explanatory power (R2, %)
AIC P
自由度
Effective degrees of freedom
Shannon-Wiener多样性指数 Shannon-Wiener diversity index
海拔 Altitude 45.9 19.57 0.040* 4.30
年均温 AMT 17 24.10 0.036* 1
年降水量 AP 4.39 27.81 0.00013*** 0.34
海拔 × 年降水量 Altitude × AP 51.1 20.16 PAltitude = 0.050*; PAP = 0.78 υAltitude = 4.64; υAP = 1.28
年降水量 × 年均温 AP × AMT 18.5 25.04 PAMT = 0.056; PAP = 0.51 υAMT = 1; υAP = 1
海拔 × 年均温 Altitude × AMT 52.4 25.61 PAMT = 0.23; PAltitude = 0.091 υAMT = 1; υAltitude = 4.62
海拔 × 年降水量 × 年均温
Altitude × AP × AMT
47.1 17.89 PAMT = 0.00083***;
PAltitude = 0.0043**; PAP = 0.097
υAMT = 1; υAltitude = 1; υAP = 1.75
Simpson优势度指数 Simpson dominance index
海拔 Altitude 43.6 13.38 0.054 4.12
年均温 AMT 16.2 17.27 0.042* 1
年降水量 AP 4.49 20.66 0.30 1
海拔 × 年降水量 Altitude × AP 49.1 13.93 PAltitude = 0.061; PAP = 0.68 υAltitude = 4.82; υAP = 1.00
年降水量 × 年均温 AP × AMT 17.3 18.92 PAMT = 0.072; PAP = 0.58 υAMT = 1; υAP = 1
海拔 × 年均温 Altitude × AMT 51 12.62 PAMT = 0.24; PAltitude = 0.11 υAMT = 4.65; υAltitude = 1
海拔 × 年降水量 × 年均温
Altitude × AP × AMT
40.1 13.42 PAMT = 0.0023**; PAltitude = 0.011*;
PAP = 0.18
υAMT = 1; υAltitude = 1; υAP = 1.45
丰富度 Richness
海拔 Altitude 36.5 63.08 0.096 3.67
年均温 AMT 17.7 64.49 0.033* 1.01
年降水量 AP 44.8 62.89 0.095 5.38
海拔 × 年降水量 Altitude × AP 65.4 55.55 PAltitude = 0.14; PAP = 0.022* υAltitude = 2.06; υAP = 5.73
年降水量 × 年均温 AP × AMT 37.3 63.77 PAMT = 0.10; PAP = 0.33 υAMT = 1.00; υAP = 3.17
海拔 × 年均温 Altitude × AMT 35.1 63.50 PAMT = 0.13; PAltitude = 0.29 υAMT = 1.00; υAltitude = 2.60
海拔 × 年降水量 × 年均温
Altitude × AP × AMT
69.6 51.72 PAMT = 0.0053**;
PAltitude = 0.0047**; PAP = 0.0097**
υAMT = 1.00; υAltitude = 1.00;
υAP = 5.57

图3

Shannon-Wiener多样性指数的最优模型环境因子光滑函数拟合结果。实点表示观测的多样性指数, 实线为模型预测的拟合曲线, 虚线表示模型预测的95%置信区间。纵坐标为环境因子的光滑函数, 表示其对Shannon-Wiener多样性指数的影响程度。"

图4

Simpson优势度指数的最优模型环境因子光滑函数拟合结果。实点表示观测的优势度指数, 实线为模型预测的拟合曲线, 虚线表示模型预测的95%置信区间。纵坐标为环境因子的光滑函数, 表示其对Simpson优势度指数的影响程度。"

图5

丰富度的最优模型环境因子光滑函数拟合结果。实点表示观测的丰富度, 实线为模型预测的拟合曲线, 虚线表示模型预测的95%置信区间。纵坐标为环境因子的光滑函数, 表示其对丰富度的影响程度。"

[40] Sinervo B, Mendez-De-La-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, Riva IJDL, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894-899.
[41] Storch D, Evans KL, Gaston KJ (2005) The species-area-energy relationship. Ecology Letters, 8, 487-492.
[42] Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301.
[43] Wang GY, Fan Y, Zhai RX (2005) Distribution and ecology of snakes in Xinjiang. Arid Zone Research, 22, 181-185. (in Chinese with English abstract)
[王国英, 范勇, 翟荣仙 (2005) 新疆蛇类的分布及生态特征. 干旱区研究, 22, 181-185.]
[44] Wang Z, Tang Z, Fang J (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854.
[45] Wen ZM, He XH, Jiao F, Jiao JY (2008) The predictive distribution of Stipa bungeana in Yanhe River catchment: GAM model and its application. Acta Ecologica Sinica, 28, 192-201. (in Chinese with English abstract)
[温仲明, 赫晓慧, 焦峰, 焦菊英 (2008) 延河流域本氏针茅(Stipa bungeana)分布预测: 广义相加模型及其应用. 生态学报, 28, 192-201.]
[46] Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
[47] Whittaker RH, Niering WA (1965) Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the south slope. Ecology, 46, 429-452.
[48] Whittaker RJ, Nogués-Bravo D, Araújo M (2007) Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) 9 using European data for five taxa. Global Ecology and Biogeography, 16, 76-89.
[49] Wilson JB, Rapson GL, Sykes MT, Watkins AJ, Williams PA (1992) Distributions and climatic correlations of some exotic species along roadsides in South Island, New Zealand. Journal of Biogeography, 19, 183-193.
[50] Wood SN (2017) Generalized Additive Models: An Introduction with R. CRC, London.
[51] Wu YJ, Lei FM (2013) Species richness patterns and mechanisms along elevational gradients. Chinese Journal of Zoology, 48, 797-807. (in Chinese with English abstract)
[吴永杰, 雷富民 (2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.]
[52] Wu YJ, Yang QS, Wen ZX, Xia L, Zhang Q, Zhou HM (2013) What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography, 36, 185-196.
[53] Wu YP, Xu H, Li YD, Luo TS, Chen DX, Lin MX (2013) Elevation patterns of tree and shrub species diversity of tropical forests in Jianfengling, Hainan Island. Scientia Silvae Sinicae, 49(4), 16-23. (in Chinese with English abstract)
[吴裕鹏, 许涵, 李意德, 骆土寿, 陈德祥, 林明献 (2013) 海南尖峰岭热带林乔灌木层物种多样性沿海拔梯度分布格局. 林业科学, 49(4), 16-23.]
[54] Xiang LG, Huang RX (1986) Study on birds in the Altai of Xinjiang: Distribution of birds. Journal of Xinjiang University, 3(3), 90-106. (in Chinese)
[向礼陔, 黄人鑫 (1986) 新疆阿尔泰山鸟类的研究——鸟类的分布. 新疆大学学报, 3(3), 90-106.]
[55] Xu SK, Xiang LG, Huang RX (1980) A new record of lizards from Sinkiang——Viviparous lizard. Journal of Xinjiang University, (2), 95-96. (in Chinese)
[许设科, 向礼陔, 黄人鑫 (1980) 新疆蜥蜴类的新记录——胎生蜥蜴. 新疆大学学报, (2), 95-96.]
[56] Zhang JT (2004) Quantitative Ecology. Science Press, Beijing. (in Chinese)
[1] Barrows CW, Hoines J, Vamstad MS, Murphy-Mariscal M, Lalumiere K, Heintz J (2016) Using citizen scientists to assess climate change shifts in desert reptile communities. Biological Conservation, 195, 82-88.
[2] Brown JH (1971) Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105, 467-478.
[56] [张金屯 (2004) 数量生态学. 科学出版社, 北京.]
[57] Zhang RZ (2011) Zoogeography of China. Science Press, Beijing. (in Chinese)
[3] Brown JL, Sillero N, Glaw F, Bora P, Vieites DR, Vences M (2016) Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE, 11, e0144076.
[4] Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. Proceedings of the Royal Society of London B: Biological Sciences, 274, 1167-1173.
[57] [张荣祖 (2011) 中国动物地理. 科学出版社, 北京.]
[58] Zhao EM, Adler K (1993) Herpetology of China. Society for the Study of Amphibians and Reptiles in cooperation with Chinese Society for the Study of Amphibians and Reptiles, Oxford, Ohio.
[5] Cai B, Wang YZ, Chen YY, Li JT (2015) A revised taxonomy for Chinese reptiles. Biodiversity Science, 23, 365-382. (in Chinese with English abstract)
[蔡波, 王跃招, 陈跃英, 李家堂 (2015) 中国爬行纲动物分类厘定. 生物多样性, 23, 365-382.]
[59] Zhao KT (1979) A survey of the classification and distribution of the toad-headed agamids (Phrynocephalus) in China. Acta Scientiarum Naturalium Universitatis Neimongol, 10(2), 111-121. (in Chinese)
[赵肯堂 (1979) 中国沙蜥属的分类和分布研究. 内蒙古大学学报(自然科学版), 10(2), 111-121.]
[6] Cao MC, Zhou GS, Weng ES (2005) Application and comparison of generalized models and classification and regression tree in simulating tree species distribution. Acta Ecologica Sinica, 25, 2031-2040. (in Chinese with English abstract)
[曹铭昌, 周广胜, 翁恩生 (2005) 广义模型及分类回归树在物种分布模拟中的应用与比较. 生态学报, 25, 2031-2040.]
[60] Zhao KT (1983) Eremias in China. Chinese Journal of Zoology, 18(2), 2-5. (in Chinese)
[赵肯堂 (1983) 中国麻蜥属的初步整理. 动物学杂志, 18(2), 2-5.]
[7] Carpio AJ, Oteros J, Tortosa FS, Guerrero-Casado J (2016) Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecologica, 70, 103-111.
[8] Chettri B, Bhupathy S, Acharya BK (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16-22.
[61] Zhao KT (1997) Toad-headed agamids in China. Chinese Journal of Zoology, 32(1), 15-18. (in Chinese)
[赵肯堂 (1997) 中国的沙蜥属研究. 动物学杂志, 32(1), 15-18.]
[9] Cui SP, Luo X, Chen DQ, Sun JZ, Chu HJ, Li CW, Jiang ZG (2016) The adder (Vipera berus) in Southern Altay Mountains: Population characteristics, distribution, morphology and phylogenetic position. PeerJ, 4, e2342.
[10] Currie DJ (1991) Energy and large-scale patterns of animal and plant-species richness. The American Naturalist, 137, 27-49.
[62] Zhao KT (1998) Geckoes (Gekkomidae) in western China. Chinese Journal of Zoology, 33(1), 19-24. (in Chinese with English abstract)
[赵肯堂 (1998) 中国西部地区的壁虎科动物研究. 动物学杂志, 33(1), 19-24.]
[63] Zheng Z, Gong DJ, Sun CX (2014a) Elevational pattern of species richness and species range size of herpetofauna in Baishuijiang Nature Reserve: A test of Rapoport’s rule. Chinese Journal of Ecology, 33, 537-546. (in Chinese with English abstract)
[郑智, 龚大洁, 孙呈祥 (2014a) 白水江自然保护区两栖爬行动物物种丰富度和种域海拔梯度格局及对Rapoport法则的验证. 生态学杂志, 33, 537-546.]
[11] Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: A review of the mechanisms. Biological Reviews, 80, 1-25.
[12] Forcella F, Harvey SJ (1983) Eurasian weed infestation in western Montana in relation to vegetation and disturbance. Madrono, 30, 102-109.
[64] Zheng Z, Gong DJ, Sun CX, Li XJ, Li WJ (2014b) Elevational pattern of amphibian and reptile diversity in Qinling Range and explanation. Biodiversity Science, 22, 596-607. (in Chinese with English abstract)
[郑智, 龚大洁, 孙呈祥, 李晓军, 李万江 (2014b) 秦岭两栖、爬行动物物种多样性海拔分布格局及其解释. 生物多样性, 22, 596-607.]
[13] Fu C, Hua X, Li J, Chang Z, Pu Z, Chen J (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: Geometric constraints, area and climate effects. Ecography, 29, 919-927.
[14] Gu JH, Gao XY (1991) Studies on the Animals in Xinjiang. Science Press, Beijing.
[65] Zhou YH, Wang GY, Ni YF (1986) A new record and subspecies of tartar sand boa. Journal of Xinjiang Agricultural University, 9(3), 42-45. (in Chinese)
[周永恒, 王国英, 倪亦非 (1986) 东方沙蟒一新纪录及一新亚种. 新疆农业大学学报, 9(3), 42-45.]
[14] (in Chinese) [谷景和, 高行宜 (1991) 新疆动物研究. 科学出版社, 北京.]
[15] Guo QF, Kelf DA, Sun ZY, Liu HX, Hu LJ, Ren H, Wen J (2013) Global variation in elevational diversity patterns. Scientific Reports, 3, 3007.
[66] Zhu Y, Kang MY (2005) Application of ordination and GLM/GAM in the research of the relationship between plant species and environment. Chinese Journal of Ecology, 24, 807-811. (in Chinese with English abstract)
[朱源, 康慕谊 (2005) 排序和广义线性模型与广义可加模型在植物种与环境关系研究中的应用. 生态学杂志, 24, 807-811.]
[16] Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
[17] Hu YM, Jin K, Huang ZW, Ding ZF, Liang JC, Pan XY, Hu HJ, Jiang ZG (2017) Elevational patterns of non-volant small mammal species richness in Gyirong Valley, Central Himalaya: Evaluating multiple spatial and environmental drivers. Journal of Biogeography, 44, 2764-2777.
[18] Huang RX, Xiang LG, Ma J (1986) Study on birds in the Altai of Xinjiang: Feeding habits of birds. Journal of Xinjiang University, 3(4), 79-92. (in Chinese)
[黄人鑫, 向礼陔, 马纪 (1986) 新疆阿尔泰山鸟类的研究——鸟类的食性. 新疆大学学报, 3(4), 79-92.]
[19] Ji DM, Wen SS (2002) Atlas of Reptiles of China. Henan Science and Technology Press, Zhengzhou. (in Chinese)
[季达明, 温世生 (2002) 中国爬行动物图鉴. 河南科学技术出版社, 郑州.]
[20] Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 500-551. (in Chinese and in English)
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂, 冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
[21] Jing XH, Zang RG, Ding Y, Zhang WY, Zhang XP, Bai ZQ, Guo ZJ (2010) Distribution pattern of species diversity along altitudinal gradient in the northern slope of Xiaodonggou in Altai Mountains, Xinjiang. Scientia Silvae Sinicae, 46(1), 23-28. (in Chinese with English abstract)
[井学辉, 臧润国, 丁易, 张炜银, 张新平, 白志强, 郭仲军 (2010) 新疆阿尔泰山小东沟北坡植物多样性沿海拔梯度分布格局. 林业科学, 46(1), 23-28.]
[22] Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149, 181-193.
[23] Kiester AR (1971) Species density of North American amphibians and reptiles. Systematic Zoology, 20, 127-137.
[24] Liu YL (2010) Ecological Environment of Altai: Along Xinjiang Kuytun-Beitun Railway. China Environmental Science Press, Beijing. (in Chinese)
[刘晏良 (2010) 阿勒泰生态环境: 新疆奎北铁路沿线. 中国环境科学出版社, 北京.]
[25] Lomolino MV (2001) Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography, 10, 3-13.
[26] Luo ZH, Tang SH, Li CW, Fang HX, Hu HJ, Yang J, Ding JJ, Jiang ZG (2012) Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS ONE, 7, e35514.
[27] Ma Y (1981a) On geographic distribution of the rodents in northern Xinjiang. Acta Zoologica Sinica, 27, 180-188. (in Chinese)
[马勇 (1981a) 新疆北部地区啮齿动物地理分布的研究. 动物学报, 27, 180-188.]
[28] Ma Y (1981b) On the dividing of the zoogeographical regions of rodents of northern Xinjiang. Acta Zoologica Sinica, 27, 395-402. (in Chinese)
[马勇 (1981b) 新疆北部地区动物地理区划的几个问题. 动物学报, 27, 395-402.]
[29] Ma Y, Wang FG, Jin SK, Li SH (1987) Glires (Rodents and Lagomorphs) of Northern Xinjiang and Their Zoogeographical Distribution. Science Press, Beijing. (in Chinese)
[马勇, 王逢桂, 金善科, 李思华 (1987) 新疆北部地区啮齿动物的分类和分布. 科学出版社, 北京.]
[30] McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360.
[31] McCain CM (2010) Global analysis of reptile elevational diversity. Global Ecology and Biogeography, 19, 541-553.
[32] Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecological Monographs, 39, 227-244.
[33] Qian H (2010) Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecological Research, 25, 629-637.
[34] Qian H, Wang X, Wang S, Li Y (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography, 30, 471-482.
[35] Rahbek C (1995) The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200-205.
[36] Richerson PJ, Lum KL (1980) Patterns of plant species diversity in California: Relation to weather and topography. The American Naturalist, 116, 504-536.
[37] Schall JJ, Pianka ER (1978) Geographical trends in numbers of species. Science, 201, 679-686.
[38] Shi L, Liu GS, Li ZH, Yuan H (2006) An record of Coluber spinalis from Altai Mountain. Journal of Xinjiang Agricultural University, 29(1), 55-57. (in Chinese with English abstract)
[时磊, 刘国仕, 李志惠, 原洪 (2006) 阿尔泰山发现黄脊游蛇. 新疆农业大学学报, 29(1), 55-57.]
[39] Shi L, Zhou YH, Yuan H (2002) Reptile fauna and zoogeographic division of Xinjiang Uygur Autonomous Region. Sichuan Journal of Zoology, 21(3), 152-157. (in Chinese)
[时磊, 周永恒, 原洪 (2002) 新疆维吾尔自治区爬行动物区系与地理区划. 四川动物, 21(3), 152-157.]
[1] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6): 607-618.
[2] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. 海南岛翼手目物种多样性现状与分布预测[J]. 生物多样性, 2019, 27(4): 400-408.
[3] 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217-226.
[4] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局[J]. 生物多样性, 2019, 27(2): 177-185.
[5] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. 中国沿海洛氏角毛藻复合群的多样性组成及地理分布[J]. 生物多样性, 2019, 27(2): 149-158.
[6] 邹东廷, 王庆刚, 罗奥, 王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状[J]. 植物生态学报, 2019, 43(1): 1-15.
[7] 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950.
[8] 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666.
[9] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[10] 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545-553.
[11] 田成, 李俊清, 杨旭煜, 余鳞, 袁丹, 黎运喜. 利用红外相机技术对四川王朗国家级自然保护区野生动物物种多样性的初步调查[J]. 生物多样性, 2018, 26(6): 620-626.
[12] 程汉亭,李勤奋,刘景坤,严廷良,张俏燕,王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594.
[13] 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429.
[14] 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响[J]. 植物生态学报, 2018, 42(4): 430-441.
[15] 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed