生物多样性 ›› 2017, Vol. 25 ›› Issue (11): 1223-1238.doi: 10.17520/biods.2017184

• 生物编目 • 上一篇    下一篇

生物多样性信息资源. I. 物种分布、编目、系统发育与生活史性状

王昕1, 2, 张凤麟1, 2, 张健1, 2, , A;*   

  1. 1 浙江天童森林生态系统国家野外科学观测研究站, 浙江宁波 315114
    2 华东师范大学生态与环境科学学院, 上海 200241;
  • 收稿日期:2017-06-25 接受日期:2017-10-06 出版日期:2017-11-20
  • 通讯作者: 张健
  • 基金项目:
    中组部“千人计划”青年人才项目和国家自然科学基金(31670439)

Biodiversity information resources. I. Species distribution, catalogue, phylogeny, and life history traits

Xin Wang1, 2, Fenglin Zhang1, 2, Jian Zhang1, 2, *   

  1. 1 Tiantong National Station for Forest Ecosystem Research, Ningbo, Zhejiang 315114
    2 School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
  • Received:2017-06-25 Accepted:2017-10-06 Online:2017-11-20
  • Contact: Zhang Jian

物种分布、编目、系统发育与生活史性状等是生物多样性研究的数据基础, 在物种起源与进化、生物多样性保护等研究中发挥着重要作用。近年来, 大量数据共享平台的建设极大地促进了生物多样性信息学的蓬勃发展, 但这些海量的、高异构性的数据资源也使得研究人员无从下手。如何高效选择和有效利用这些资源, 成为生态学家和保护生物学家面临的一大挑战。针对现有的生物多样性数据零散分布的现状, 本文将这些数据从物种分布、编目、系统发育与生活史性状4个方面进行整理, 分别选取一些代表性的数据库如: 全球生物多样性信息网络(GBIF)、世界植物种名录(The Plant List)、Open Tree of Life、植物性状数据库(TRY), 对其数据类型、采集方式、范围、获取方式等进行描述, 并对相关研究成果进行简要介绍。在各部分中, 针对我国生物多样性数字平台的构建等方面的工作与成果, 我们也进行了简要描述。通过这些数据资源的整理, 希望为研究人员了解和使用这些数据库提供桥梁和纽带, 能够进一步促进国内研究人员对这些数据库的有效利用, 并通过科研人员与公众等的参与, 促进数据共享平台的构建与完善, 进一步推动生物多样性的研究和保护领域的发展。

关键词: 生物多样性信息学, 宏生态学, 物种编目, 系统发育, 功能性状, 数据共享

Species distribution, catalogues, phylogeny, and life history traits are the data basis of biodiversity studies, playing critical roles in understanding species origins, evolution, and conservation biodiversity. Recently, a large number of scientific data-sharing platforms have been created, greatly contributing to the development of biodiversity informatics. However, it is difficult for most researchers to deal with big data with high complexity and heterogeneity. Determining how to select and utilize these data accurately and effectively becomes a huge challenge for ecologists and conservation biologists. To better deal with existing problems related to scattered distributed data, we classify biodiversity data resources into four groups (species distribution, catalogues, phylogeny and life history traits), and select representative databases (e.g. Global Biodiversity Information Facility, The Plant List, Open Tree of Life, and The Plant Trait Database (TRY) for demonstration. For each database, data type, and sampling design, geographic coverage and data availability are reported, and selected publications using these datasets are briefly introduced. Meanwhile, we describe recent achievements on the construction of China’s biodiversity digital platforms in each section. Overall, we hope that this paper provides a starting point for researchers to be familiar with these databases and use them correctly, and could have the potential to stimulate the development of related fields in research and conservation of biodiversity under the efforts of researchers and the public.

Key words: biodiversity informatics, marcoecology, species catalogue, phylogeny, functional trait, data sharing

图1

基于GBIF数据在2011-2016年之间发表的论文统计(数据来源: http://www.gbif.org/mendeley)"

表1

世界植物种名录(The Plant List)中的接受名、异名和未评估名数量及其比例"

分类
Classification
接受名数量
Number of accepted names (%)
异名数量
Number of synonyms names (%)
尚未评估名数量
Number of unassessed names (%)
被子植物 Angiosperms 304,419 (32.0) 430,346 (45.2) 216,132 (22.7)
裸子植物 Gymnosperms 1,104 (23.7) 3,356 (72.2) 191 (4.1)
蕨类植物 Pteridophytes 10,620 (22.4) 14,503 (30.6) 22,316 (47.0)
苔藓植物 Bryophytes 34,556 (56.8) 22,419 (36.9) 3,830 (6.3)

图2

不同类群的系统发育树。(a) 31,749种种子植物(Zanne et al, 2014); (b) 9,993种鸟类(Jetz et al, 2012); (c) 4,510种哺乳动物(Bininda-Emonds et al, 2007); (d) 4,161种两栖和爬行类动物(Pyron et al, 2013)。图中的系统发育树是分别从4个类群的系统发育树中随机选取500个物种而生成的。"

图3

植物性状数据库TRY中的现有数据分布(https://www.try-db.org/)(a)和基于TRY数据在2011-2016年发表的论文统计(b)"

[1] Allen WL, Street SE, Capellin I (2017) Fast life history traits promote invasion success in amphibians and reptiles. Ecology Letters, 20, 222-230.
[2] Bechtold WA, Patterson PL (2005) The Enhanced Forest Inventory and Analysis Program: National Sampling 258 Design and Estimation Procedures. General Technical Report, SRS-80 edition. USDA Forest Service, Southern Research Station, Asheville, NC.
[3] Belmaker J, Jetz W (2015) Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters, 18, 563-571.
[4] Bininda-Emonds ORP, Cardillo M, Jones KE, Macphee RDE, Beck RMD, Grenyer R, Purvis A (2007) The delayed rise of present-day mammals. Nature, 446, 507-512.
[5] Brooks DR, Mayden RL, McLennan DA (1992) Phylogeny and biodiversity: conserving our evolutionary legacy. Trends in Ecology and Evolution, 7, 55-59.
[6] Brown JH (1995) Macroecology. Chicago University Press, Chicago.
[7] Burleigh JG, Barbazuk WB, Davis JM, Morse AM, Soltis PS (2012) Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. Journal of Botany, 2012, 292857.
[8] Camilo M, Tittensor DP, Sina A, Simpson AGB, Boris W (2011) How many species are there on earth and in the ocean? PLoS Biology, 9, e1001127.
[9] Caspersen JP, Pacala SW, Jenkins JC (2000) Contributions of land-use history to carbon accumulation in U.S. forests. Science, 290, 1148-1152.
[10] Cayuela L, Granzow-de la Cerda, Albuquerque FS, Golicher DJ (2012) Taxonstand: an R package for species names standardisation in vegetation databases. Methods in Ecology and Evolution, 3, 1078-1083.
[11] Chamberlain S (2017) rgbif: Interface to the Global “Biodiversity” Information Facility “API”. R package version 0.9.9. https://CRAN.R-project.org/package=rgbif. (accessed on 2017-11-30)
[12] Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
[13] Chen ZD, Lu AM, Zhang SZ, Wang QF, Liu ZJ, Li DZ, Wen J (2016a) The tree of life: China project. Journal of Systematics and Evolution, 54, 273-276.
[14] Chen ZD, Yang T, Lin L, Lu LM, Li HL, Sun M, Liu QX (2016b) Tree of life for the genera of Chinese vascular plants. Journal of Systematics and Evolution, 54, 277-306.
[15] De Magalhaes JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. Journal of Evolutionary Biology, 22, 1770-1774.
[16] Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Gorné LD (2015) The global spectrum of plant form and function. Nature, 529, 1-17.
[17] Dyke GJ, Tuinen MV (2004) The evolutionary radiation of modern birds (Neornithes): reconciling molecules, morphology and the fossil record. Zoological Journal of the Linnean Society, 141, 153-177.
[18] Engemann K, Sandel B, Boyle B, Enquist BJ, Jørgensen PM, Kattge J, Violle C (2016) A plant growth form dataset for the New World. Ecology, 97, 3243.
[19] Ericson PG, Zuccon D, Ohlson JI, Johansson US, Alvarenga H, Prum RO (2006) Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). Molecular Phylogenetics and Evolution, 40, 471-483.
[20] Faurby S, Eiserhardt WL, Baker WJ, Svenning JC (2016) An all-evidence species-level supertree for the palms (Arecaceae). Molecular Phylogenetics and Evolution, 100, 57-69.
[21] Faurby S, Svenning JC (2015) A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Molecular Phylogenetics and Evolution, 84, 14-26.
[22] Foden WB, Butchart SH, Stuart SN, Vié JC, Akçakaya HR, Angulo A (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE, 8, e65427.
[23] Frieswyk CB, Johnston CA, Zedler JB (2007) Identifying and characterizing dominant plants as an indicator of community condition. Journal of Great Lakes Research, 33, 125-135.
[24] Fristoe TS (2015) Energy use by migrants and residents in North American breeding bird communities. Global Ecology and Biogeography, 24, 406-415.
[25] Fritz SA, Bininda-Emonds ORP, Purvis A (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters, 12, 538-549.
[26] Fritz SA, Rahbek C (2012) Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39, 1373-1382.
[27] Fu ZX, Jiao BH, Nie B, Zhang GJ, Gao TG, Chen ZD, Liu QX (2016) A comprehensive generic-level phylogeny of the sunflower family: implications for the systematics of Chinese Asteraceae. Journal of Systematics and Evolution, 54, 416-437.
[28] Garcia RA, Araújo MB, Burgess ND, Foden WB, Gutsche A, Rahbek C (2014) Matching species traits to projected threats and opportunities from climate change. Journal of Biogeography, 41, 724-735.
[29] García-Roselló E, Guisande C, Heine J, Pelayo-Villamil P, Manjarrés-Hernández A, González Vilas L, González-Dacosta J, Vaamonde A, Granado-Lorencio C (2014) Using ModestR to download, import and clean species distribution records. Methods in Ecology and Evolution, 5, 708-713.
[30] GBIF (2016) GBIF Science Review. Global Biodiversity Information Facility.2016) GBIF Science Review. Global Biodiversity Information Facility. (accessed on 2017-11-30
[31] Geng Y, Ma W, Wang L, Baumann F, Kühn P, Scholten T, He JS (2017) Linking above- and belowground traits to soil and climate variables: an integrated database on China’s grassland species. Ecology, 98, 1471.
[32] Gray C, Hill SL, Newbold T, Hudson LN, Börger L, Contu S, Scharlemann JP (2016) Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 7, 12306.
[33] Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Ding TS (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96.
[34] Grimm A, Ramírez AMP, Moulherat S, Reynaud J, Henle K (2014) Life-history trait database of European reptile species. Nature Conservation, 9, 45-67.
[35] Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Huddleston CJ (2008) A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763-1768.
[36] Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30, 1229-1235.
[37] Hampton SE, Strasser CA, Tewksbury JJ, Gram WK, Budden AE, Batcheller AL, Porter JH (2013) Big data and the future of ecology. Frontiers in Ecology and the Environment, 11, 156-162.
[38] Healy K, Guillerme T, Finlay S, Kane A, Kelly SB, McClean D, Cooper N (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140298.
[39] Hebert PD, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Systematic Biology, 54, 852-859.
[40] Hijmans RJ, Elith J (2017) Species Distribution Modeling With R.R package Version 1.1-4 . (accessed on 2017-11-30)
[41] Hilbers JP, Santini L, Visconti P, Schipper AM, Pinto C, Rondinini C, Huijbregts MA (2016) Setting population targets for mammals using body mass as a predictor of population persistence. Conservation Biology, 31, 385-393.
[42] Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM (2015) Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences, USA, 112, 12764-12769.
[43] Hong DY (2016) Biodiversity pursuits need a scientific and operative species concept. Biodiversity Science, 24, 979-999. (in Chinese with English abstract)
[洪德元 (2016) 生物多样性事业需要科学、可操作的物种概念. 生物多样性, 24, 979-999.]
[44] Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution and Systematics, 46, 523-549.
[45] Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Purvis A (2014) The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 4, 4701-4735.
[46] Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Purvis A (2017) The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project. Ecology and Evolution, 7, 145-188.
[47] Jarvis ED, Mirarab S, Abere AJ, Li B, Houde P, Li C (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346, 1320-1331.
[48] Jarzyna MA, Jetz W (2017) A near half-century of temporal change in different facets of avian diversity. Global Change Biology, 23, 2999-3011.
[49] Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, USA, 110, E2602-E2610.
[50] Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature, 491, 444-448.
[51] Jetz W, Thomas GH, Joy JB, Redding DW, Hartmann K, Mooers AO (2014) Global distribution and conservation of evolutionary distinctness in birds. Current Biology, 24, 919-930.
[52] Ji LQ, Qiao HJ, Xie BG (2004) GBIF, The Global Biodiversity Information Facility: its organization, activities, programme and information services. In: Advances in Biodiversity Conservation and Research in China VI: Proceedings of the Sixth National Biodiversity Conservation and Sustainable Utilization Conference (ed. Ma KP), pp.79-141. China Meteorological Press,Beijing. (in Chinese with English abstract)
[纪力强, 乔慧捷, 谢本贵 (2004) 全球生物多样性信息网络(GBIF)介绍x:组织、活动、项目和信息服务. 见: 中国生物多样性保护与研究进展VI——第六届全国生物多样性保护与持续利用研讨会论文集(马克平主编), 79-141页.气象出版社,北京.]
[53] Jones KE, Bielby J, Cardillo M, Fritz S, O’Dell J, Orme CDL, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90, 2648.
[54] Joppa LN, Visconti P, Jenkins CN, Pimm SL (2013) Achieving the convention on biological diversity’s goals for plant conservation. Science, 341, 1100-1103.
[55] Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Cornelissen JHC (2011) TRY—a global database of plant traits. Global Change Biology, 17, 2905-2935.
[56] Keil P, Storch D, Jetz W (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.
[57] Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science, 349, 177-180.
[58] Khaliq I, Hof C, Prinzinger R, Böhning-Gaese K, Pfenninger M (2014) Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20141097.
[59] Kissling WD, Dalby L, Fløjgaard C, Lenoir J, Sandel B, Sandom C, Svenning JC (2014) Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecology and Evolution, 4, 2913-2930.
[60] Kraft NJ, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences, USA, 112, 797-802.
[61] Kunstler G, Falster D, Coomes DA, Hui F, Kooyman Robert M, Laughlin DC, Ruiz-Benito P (2016) Plant functional traits have globally consistent effects on competition. Nature, 529, 1-15.
[62] La Sorte FA, Hochachka WM, Farnsworth A, Dhondt AA, Sheldon D (2016) The implications of mid-latitude climate extremes for North American migratory bird populations. Ecosphere, 7, e01261.
[63] Lafferty KD, Rodriguez DA, Chapman A (2013) Temporal and spatial variation in bird and human use of beaches in southern California. SpringerPlus, 2, 38-51.
[64] Lehtonen S (2011) Towards resolving the complete fern tree of life. PLoS ONE, 6, e24851.
[65] Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature, 486, 109-112.
[66] Li JJ, Huang XL (2016) Analysis of publication trends of biodiversity data papers. Biodiversity Science, 24, 1317-1324. (in Chinese with English abstract)
[李俊洁, 黄晓磊 (2016) 生物多样性数据论文发表趋势分析. 生物多样性, 24, 1317-1324.]
[67] Li R, Wen J (2016) Phylogeny and diversification of Chinese Araliaceae based on nuclear and plastid DNA sequence data. Journal of Systematics and Evolution, 54, 453-467.
[68] Liu XJ, Ma KP (2015) Plant functional traits-concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. (in Chinese with English abstract)
[刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
[69] Lu LM, Sun M, Zhang JB (2014) Tree of life and its applications. Biodiversity Science, 22, 3-20. (in Chinese with English abstract)
[鲁丽敏, 孙苗, 张景博 (2014) 生命之树及其应用. 生物多样性, 22, 3-20.]
[70] Ma KP (2014) Rapid development of biodiversity informatics in China. Biodiversity Science, 22, 251-252. (in Chinese)
[马克平 (2014) 生物多样性信息学在中国快速发展. 生物多样性, 22, 251-252.]
[71] Ma KP (2015) Species Catalogue of China: a remarkable achievement in the field of biodiversity science in China. Biodiversity Science, 23, 137-138. (in Chinese)
[马克平 (2015) 中国生物多样性编目取得重要进展. 生物多样性, 23, 137-138.]
[72] McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
[73] Meehan TD, Hurlbert AH, Gratton C (2010) Bird communities in future bioenergy landscapes of the Upper Midwest. Proceedings of the National Academy of Sciences, USA, 107, 18533-18538.
[74] Meyer C, Kreft H, Guralnick R, Jetz W (2015) Global priorities for an effective information basis of biodiversity distributions. Nature Communications, 6, 8221.
[75] Meyer C, Weigelt P, Kreft H, Lambers JHR (2016) Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters, 19, 992-1006.
[76] Michonneau F, Brown JW, Winter DJ (2016) rotl: an R package to interact with the Open Tree of Life data. Methods in Ecology and Evolution, 7, 1476-1481.
[77] Naisbit RE, Rohr RP, Rossberg AG, Kehrli P, Bersier LF (2012) Phylogeny versus body size as determinants of food web structure. Proceedings of the Royal Society of London B: Biological Sciences, 279, 3291-3297.
[78] Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 353, 288-291.
[79] Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior R, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-50.
[80] O’Leary MA, Bloch JI, Flynn JJ, Giallombardo A, Giannini NP, Cirranello AL (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 339, 662-667.
[81] Oliveira BF, Machac A, Costa GC, Brooks TM, Davidson AD, Rondinini C, Graham CH (2016) Species and functional diversity accumulate differently in mammals. Global Ecology and Biogeography, 25, 1119-1130.
[82] Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH, Kovacs KM, Corlett RT (2015) Assessing species vulnerability to climate change. Nature Climate Change, 5, 215-224.
[83] Price SA, Hopkins SS, Smith KK, Roth VL (2012) Tempo of trophic evolution and its impact on mammalian diversification. Proceedings of the National Academy of Sciences, USA, 109, 7008-7012.
[84] Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526, 569-573.
[85] Pulido-Santacruz P, Weir JT (2016) Extinction as a driver of avian latitudinal diversity gradients. Evolution, 70, 860-872.
[86] Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.
[87] Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543-583.
[88] RBG Kew (2016) State of the World’s Plants Report 2016. Royal Botanic Gardens, Kew.
[89] Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling R, Yan X (2004) Effectiveness of the global protected area network in representing species diversity. Nature, 428, 9-12.
[90] Sauer JR, Hines JE, Fallcon JE, Pardieck KL, Ziolkowski DJ, Link WA (2012) The North American Breeding Bird Survey, Results and Analysis 1966-2011. Version 12.13.2011. USGS Patuxent Wildlife Research Center, Laurel, USA.
[91] Schipper AM, Belmaker J, Miranda MD, Navarro LM, Böhning-Gaese K, Costello MJ, Martín-López B (2016) Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 22, 3948-3959.
[92] Shao GZ, Li H, Lin YC (2014) Review of marine biodiversity information resources. Biodiversity Science, 22, 253-263. (in Chinese with English abstract)
[邵广昭, 李瀚, 林永昌 (2014) 海洋生物多样性信息资源. 生物多样性, 22, 253-263.]
[93] Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Faircloth BC (2014) The drivers of tropical speciation. Nature, 515, 406-409.
[94] Smith MD, Knapp AK, Collins SL (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
[95] Soberòn J, Peterson T (2004) Biodiversity informatics: managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359, 689-698.
[96] Stegen JC, Vellend M (2013) Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 22, 202-212.
[97] Stropp J, Ladle RJ, Ana AC, Hortal J, Gaffuri J, Temperley W, Dornelas M (2016) Mapping ignorance: 300 years of collecting flowering plants in Africa. Global Ecology and Biogeography, 25, 1085-1096.
[98] Sun M, Naeem R, Su JX, Cao ZY, Burleigh JG, Soltis PS, Chen ZD (2016) Phylogeny of the Rosidae: a dense taxon sampling analysis. Journal of Systematics and Evolution, 54, 363-391.
[99] Trakimas G, Whittaker RJ, Borregaard MK (2016) Do biological traits drive geographical patterns in European amphibians? Global Ecology and Biogeography, 25, 1228-1238.
[100] Trochet A, Moulherat S, Calvez O, Stevens VM, Clobert J, Schmeller DS (2014) A database of life-history traits of European amphibians. Biodiversity Data Journal, 2, e4123.
[101] Tsianou MA, Kallimanis AS (2016) Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodiversity and Conservation, 25, 117-132.
[102] Van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Wieringa JJ (2015) Global exchange and accumulation of non-native plants. Nature, 525, 100-103.
[103] Visconti P, Bakkenes M, Baisero D, Brooks T, Butchart SH, Joppa L, Maiorano L (2016) Projecting global biodiversity indicators under future development scenarios. Conservation Letters, 9, 5-13.
[104] Wang H, Harrison SP, Prentice IC, Yang Y, Bai F, Togashi HF, Ni J (2017) The China plant trait database: towards a comprehensive regional compilation of functional traits for land plants. Ecology, doi: 10.1002/ecy.2091.
[105] Wang JJ, Chen GK, Ma KP (2015) Tools for standardization of plant names. Biodiversity Science, 23, 252-253. (in Chinese )
[王钧杰, 陈国科, 马克平 (2015) 植物学名校订工具. 生物多样性, 23, 252-253.]
[106] Wang LS, Chen B, Ji LQ, Ma KP (2010) Progress in biodiversity informatics. Biodiversity Science, 18, 429-443. (in Chinese with English abstract)
[王利松, 陈彬, 纪力强, 马克平 (2010) 生物多样性信息学研究进展. 生物多样性, 18, 429-443.]
[107] Wang W, Dilcher DL, Sun G, Wang HS, Chen ZD (2016) Accelerated evolution of early angiosperms: evidence from ranunculalean phylogeny by integrating living and fossil data. Journal of Systematics and Evolution, 54, 336-341.
[108] Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
[109] Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Resources, 5, 181-183.
[110] Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London B: Biological Sciences, 268, 2211-2220.
[111] Wilman H, Belmaker J, Jennifer S, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology, 95, 2027.
[112] Woodall CW, Domke GM, MacFarlane DW, Oswalt CM (2012) Comparing field- and model-based standing dead tree carbon stock estimates across forests of the US. Forestry, 85, 125-133.
[113] Xiao XW, Yao CT, Chen XF (2005) Main points of forest resource inventory in US and guiding suggestions. Forest Resources Management, 34, 27-33. (in Chinese with English abstract)
[肖兴威, 姚昌恬, 陈雪峰 (2005) 美国森林资源清查的基本做法和启示. 林业资源管理, 34, 27-33.]
[114] Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M, Culham A (2007) How global is the global biodiversity information facility? PLoS ONE, 2, e1124.
[115] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
[116] Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346, 1311-1320.
[117] Zhang J (2017) Biodiversity science and macroecology in the era of big data. Biodiversity Science, 25, 355-363. (in Chinese with English abstract)
[张健 (2017) 大数据时代的生物多样性科学与宏生态学. 生物多样性, 25, 355-363.]
[118] Zhang J, Chen SB, Chen B, Du YJ, Huang XL, Pan XB, Zhang Q (2013) Citizen science: integrating scientific research, ecological conservation and public participation. Biodiversity Science, 21, 738-749. (in Chinese with English abstract)
[张健, 陈圣宾, 陈彬, 杜彦君, 黄晓磊, 潘绪斌, 张强 (2013) 公众科学: 整合科学研究, 生态保护和公众参与. 生物多样性, 21, 738-749.]
[119] Zhang J, Kissling WD, He F (2013) Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. Journal of Biogeography, 40, 1131-1142.
[120] Zhang J, Nielsen SE, Chen Y, Georges D, Qin Y, Wang SS, Thuiller W (2016) Extinction risk of North American seed plants elevated by climate and land-use change. Journal of Applied Ecology, 54, 303-312.
[121] Zhang JL (2017) Plantlist: Looking up Families of Higher Plants. R package version 0.3.6. https://r-forge.r-project.org/R/?group_id=2052 (accessed on 2017-11-30)
[122] Zhang WJ, Chen JK (2003) Advances in study of the distribution area of species. Biodiversity Science, 11, 364-369. (in Chinese with English abstract)
[张文驹, 陈家宽 (2003) 物种分布区研究进展. 生物多样性, 11, 364-369.]
[123] Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 18, 1042-1052.
[1] 顾菡娇, 张参参, 汪金松, 施雪文, 夏瑞雪, 刘斌, 陈伏生, 卜文圣. 中国竹类植物基本形态学功能性状的比较[J]. 生物多样性, 2019, 27(6): 585-594.
[2] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[3] 赵月梅 杨振艳 赵永平 李筱玲 赵志新 赵桂仿. 木犀科植物叶绿体基因组结构特征和系统发育关系[J]. 植物学报, 2019, 54(4): 0-0.
[4] 肖治术,陈立军,宋相金,束祖飞,肖荣高,黄小群. 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估[J]. 生物多样性, 2019, 27(3): 237-242.
[5] 陈立军,肖文宏,肖治术. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 2019, 27(3): 243-248.
[6] 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,倪红伟. 五大连池火山色木槭叶功能性状特征[J]. 生物多样性, 2019, 27(3): 286-296.
[7] 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208-216.
[8] 梁士楚, 刘润红, 荣春艳, 常斌, 姜勇. 漓江河岸带植物功能性状变异与关联[J]. 植物生态学报, 2019, 43(1): 16-26.
[9] 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925.
[10] 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666.
[11] 马钦洪, 李艳朋, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林不同树种存活对邻体组成的响应差异[J]. 生物多样性, 2018, 26(6): 535-544.
[12] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228.
[13] 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219.
[14] 赵乐文, 陈梓熠, 邹滢, 付子钊, 吴桂林, 刘小容, 罗琦, 林忆雪, 李雄炬, 刘智通, 刘慧. 九种维管植物水力性状的演化趋势[J]. 植物生态学报, 2018, 42(2): 220-228.
[15] 陈自宏, 杨晓娜, 孙宁静, 徐玲, 郑元, 杨宇明. 中国西南高黎贡山绿僵菌物种多样性及其垂直分布特征[J]. 生物多样性, 2018, 26(12): 1308-1317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed