生物多样性 ›› 2018, Vol. 26 ›› Issue (2): 130-137.doi: 10.17520/biods.2017078

• 研究报告 • 上一篇    下一篇

青藏高原特有种子植物区系特征及多样性分布格局

于海彬1, 2, 张镱锂1, 3, *(), 刘林山1, 陈朝4, 祁威1   

  1. 1 .中国科学院地理科学与资源研究所, 陆地表层格局与模拟院重点实验室, 北京 100101
    2 .中山大学生命科学学院, 广州 510275
    3 .中国科学院大学, 北京 100049
    4 .广东省生态环境技术研究所, 广州 510650
  • 收稿日期:2017-03-14 接受日期:2017-07-01 出版日期:2018-04-02
  • 通讯作者: 张镱锂 E-mail:zhangyl@igsnrr.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(41271068, 41371120)、中国科学院陆地表层格局与模拟重点实验室开放基金(GJ-2017-03)和中国博士后科学基金(2016M592568)

Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau

Haibin Yu1, 2, Yili Zhang1, 3, *(), Linshan Liu1, Zhao Chen4, Wei Qi1   

  1. 1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
    2 School of Life Sciences, Sun Yat-sen University, Guangzhou 510275
    3 University of Chinese Academy of Sciences, Beijing 100049
    4 Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650;
  • Received:2017-03-14 Accepted:2017-07-01 Online:2018-04-02
  • Contact: Zhang Yili E-mail:zhangyl@igsnrr.ac.cn
  • About author:

    # Co-first authors

青藏高原拥有丰富的种子植物, 但对该地区特有植物的区系特征以及多样性还鲜有报道。本文通过植物志(书)以及在线数据库, 整理了只分布于青藏高原地区的种子植物名录及其地理分布, 分析了它们的科属特征、区系成分以及多样性空间分布格局。结果表明: 青藏高原共有特有种子植物3,764种, 隶属113科519属, 多数为草本植物(76.3%); 包含100种以上的科有菊科、毛茛科、列当科等15个, 属有马先蒿属(Pedicularis)、杜鹃花属(Rhododendron)、紫堇属(Corydalis)等7个; 从属的区系成分来看, 温带成分占主导(67.5%)。青藏高原特有植物多样性格局呈现从高原东南部向西北部逐渐递减的趋势, 其中东喜马拉雅-横断山脉的物种多样性非常丰富, 而且多数物种分布在高原的中海拔地带。理解青藏高原特有物种的特征及多样性格局对探讨高原植物区系的演化历史和物种保护有重要启示。

关键词: 多样性格局, 植物区系, 特有现象, 高山植物, 青藏高原

The Tibetan Plateau (TP) harbors numerous seed plants, however, the floristic characteristics and diversity patterns of plants endemic to this region have been rarely studied. Based on several monographs and online databases, we compiled a list of seed plants that exclusively occur on the TP as well as their distribution at the county level. We further explored their characteristics, floristic composition and spatial distribution patterns. We identified 3,764 endemic seed plants belonging to 519 genera and 113 families, 76.3% of which are herbaceous plants. Among them, 15 families (e.g. Asteraceae, Ranunculaceae, Orobanchaceae) and 7 genera (e.g. Pedicularis, Rhododendron, Corydalis) contain over 100 endemic species. Floristic composition analysis indicates that 67.5% of these endemic plants are temperate species. Species diversity declined gradually from the southeast to the northwest with hotspots located within the East Himalaya-Hengduan Mountains. Vertically, most species occurred at intermediate elevations. Understanding floristic characteristics and diversity patterns of Tibetan endemic flora shed light on future studies on the evolutional history and conservation practices in this area.

Key words: diversity patterns, flora, endemism, alpine plant, Tibetan Plateau

图1

青藏高原含50个特有种以上科(a)和含30个特有种以上属(b)及其所占的比例。科属前面的数字代表它们包含的物种数。"

表1

青藏高原特有种子植物属的分布区类型"

分布类型 Areal type 属数 Number of genera 百分比 %
1 世界分布 Cosmopolitan 40 7.7
2 泛热带 Pantropic 45 8.7
3 东亚及热带美洲间断 Tropical Asia and Tropical America disjunction 9 1.7
4 旧世界热带 Old World Tropic 16 3.1
5 热带亚洲至热带大洋洲 Tropical Asia to Tropical Australia 15 2.9
6 热带亚洲至热带非洲 Tropical Asia to Tropical Africa 13 2.5
7 热带亚洲 Tropical Asia 31 5.9
热带成分小计(2-7) Subtotal in tropical elements (types 2-7) 129 24.8
8 北温带 North Temperate 131 25.2
9 东亚及北美间断 East Asia and North America disjunction 20 3.9
10 旧世界温带 Old World Temperate 50 9.7
11 温带亚洲 Temperate Asia 11 2.1
12 地中海、西亚至中亚 Mediterranean, West Asia to Central Asia 10 1.9
13 中亚 Central Asia 19 3.6
14 东亚 East Asia 65 12.6
15 中国特有 Endemic to China 44 8.5
温带成分小计(8-15) Subtotal in temperate elements (types 8-15) 350 67.5
总计 Total 519 100.0

图2

基于县域尺度(a)和植物区系区尺度(b)的青藏高原特有种子植物多样性分布格局。图中编号对应附录1中的县级行政区名称和植物区系区名称。"

图3

垂直方向上不同生长型特有物种的丰富度格局。(a)所有物种; (b)草本; (c)灌木; (d)乔木。"

[1] APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
[2] Chen SB, Ouyang ZY, Fang Y, Li ZJ (2011) Geographic pat¬terns of endemic seed plant genera diversity in China. Bio¬diversity Science, 19, 414-423. (in Chinese with English abstract)
[陈圣宾, 欧阳志云, 方瑜, 李振基 (2011) 中国种子植物特有属的地理分布格局. 生物多样性, 19, 414-423.]
[3] Cun YZ, Wang XQ (2010) Plant recolonization in the Hima¬laya from the southeastern Qinghai-Tibetan Plateau: Geo¬graphical isolation contributed to high population differen¬tiation. Molecular Phylogenetics and Evolution, 56, 972-982.
[4] Favre A, Michalak I, Chen CH, Wang JC, Pringle JS, Matuszak S, Sun H, Yuan Y, Struwe L, Muellner-Riehl AN (2016) Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). Journal of Biogeography, 43, 1967-1978.
[5] Feng G, Mao LF, Sandel B, Swenson N, Svenning J (2016) High plant endemism in China is partially linked to reduced glacial-interglacial climate change. Journal of Biogeogra¬phy, 43, 145-154.
[6] Gao QB, Li YH, Gornall RJ, Zhang ZX, Zhang FQ, Xing R, Fu PC, Wang JL, Liu HR, Tian ZZ, Chen SL (2015) Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon, 64, 703-713.
[7] Huang JH, Chen JH, Ying JS, Ma KP (2011) Features and dis¬tribution patterns of Chinese endemic seed plant species. Journal of Systematics and Evolution, 49, 81-94.
[8] Huang JH, Huang JH, Liu CR, Zhang JL, Lu XH, Ma KP (2016) Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biological Conservation, 198, 104-112.
[9] Huang JH, Ma KP, Chen B (2014) Diversity and Geographical Distributions of Chinese Endemic Seed Plants. Higher Education Press, Beijing. (in Chinese)
[黄继红, 马克平, 陈彬 (2014) 中国特有种子植物的多样性及其地理分布. 高等教育出版社, 北京.]
[10] Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endem¬ism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences, USA, 106, 9322-9327.
[11] Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Acad¬emy of Sciences, USA, 104, 5925-5930.
[12] Liu B, Ye JF, Liu S, Wang Y, Yang Y, Lai YJ, Zeng G, Lin QW (2015) Families and genera of Chinese angiosperms: A synoptic classification based on APG III. Biodiversity Science, 23, 225-231. (in Chinese with English abstract)
[刘冰, 叶建飞, 刘夙, 汪远, 杨永, 赖阳均, 曾刚, 林秦文 (2015) 中国被子植物科属概览: 依据APG III系统. 生物多样性, 23, 225-231.]
[13] Liu JQ, Duan YW, Hao G, Ge XJ, Sun H (2014) Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. Journal of Systematics and Evolu¬tion, 52, 241-249.
[14] López Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S (2011) Centres of plant endemism in China: Places for survival or for speciation? Journal of Biogeography, 38, 1267-1280.
[15] Mao LF, Chen SB, Zhang JL, Hou YH, Zhou GS, Zhang XS (2013) Vascular plant diversity on the roof of the world: Spatial patterns and environmental determinants. Journal of Systematics and Evolution, 51, 371-381.
[16] Matuszak S, Muellner Riehl AN, Sun H, Favre A (2016) Dis¬persal routes between biodiversity hotspots in Asia: The case of the mountain genus Tripterospermum (Gentianinae, Gentianaceae) and its close relatives. Journal of Biogeography, 43, 580-590.
[17] Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
[18] Qiu YX, Fu CX, Comes HP (2011) Plant molecular phy¬logeography in China and adjacent regions: Tracing the ge¬netic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mo¬lecular Phylogenetics and Evolution, 59, 225-244.
[19] R Core Team (2016) R: A language and environment for statis¬tical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. (accessed on 2016-11-10)
[20] Ren G, Conti E, Salamin N (2015) Phylogeny and biogeography of Primula sect. Armerina: Implications for plant evolu¬tion under climate change and the uplift of the Qinghai- Ti¬bet Plateau. BMC Evolutionary Biology, 15, 161.
[21] Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Suth¬erland WJ, Svenning J (2011) The influence of Late Qua¬ternary climate-change velocity on species endemism. Sci¬ence, 334, 660-664.
[22] Shi YF, Li JJ, Li BY (1998) Uplift and Environmental Changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guang¬dong Science and Technology Press, Guangzhou. (in Chinese)
[施雅风, 李吉均, 李炳元 (1998) 青藏高原晚新生代隆升与环境变化. 广东科技出版社, 广州.]
[23] Svenning J, Skov F (2004) Limited filling of the potential range in European tree species. Ecology Letters, 7, 565-573.
[24] The Comprehensive Scientific Expedition to the Qinghai Xi¬zang Plateau, Chinese Academy of Sciences(1993) Vascular Plants of the Hengduan Mountains, Vol. 1. Science Press, Beijing. (in Chinese)
[中国科学院青藏高原综合科学考察队(1993) 横断山区维管植物(上册). 科学出版社, 北京.]
[25] The Comprehensive Scientific Expedition to the Qinghai Xi¬zang Plateau, Chinese Academy of Sciences (1994) Vascu¬lar Plants of the Hengduan Mountains, Vol. 2. Science Pre¬ss, Beijing. (in Chinese)
[中国科学院青藏高原综合科学考察队(1994) 横断山区维管植物(下册). 科学出版社, 北京.]
[26] Thorne RF (1999) Eastern Asia as a living museum for archaic angiosperms and other seed plants. Taiwania, 44, 413-422.
[27] Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeog¬raphy, 11, 291-301.
[28] Wang HS (1999) The evolution and sources of North China’s flora. Acta Geographica Sinica, 54, 213-223. (in Chinese with English abstract)
[王荷生 (1999) 华北植物区系的演变和来源. 地理学报, 54, 213-223.]
[29] Wang ZH, Tang ZY, Fang JY (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13, 845-854.
[30] Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolution¬ary diversifications of plants on the Qinghai-Tibetan Plat¬eau. Frontiers in Genetics, 5, 4.
[31] Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecol¬ogy and species richness. Trends in Ecology and Evolution, 19, 639-644.
[32] Wu YH (1995) The floristic characteristics in the source area of the Yellow River in China. Acta Botanica Boreali- Occ¬identalia Sinica, 15, 82-89. (in Chinese with English ab¬s¬tract)
[吴玉虎 (1995) 黄河源头地区植物的区系特征. 西北植物学报, 15, 82-89.]
[33] Wu YH (2000) The floristic characteristics in the source area of Changjiang (Yangtze) River. Acta Botanica Boreali- Occi¬dentalia Sinica, 20, 1086-1101. (in Chinese with Eng¬lish abstract)
[吴玉虎 (2000) 长江源区植物区系特征. 西北植物学报, 20, 1086-1101.]
[34] Wu YH (2008) The Vascular Plants and Their Eco-geogr¬¬aphical Distribution of the Qinghai-Tibetan Plateau. Science Press, Beijing. (in Chinese)
[吴玉虎 (2008) 青藏高原维管植物及其生态地理分布. 科学出版社, 北京.]
[35] Wu YH (2009) Floristic study on the source area of Lancang¬jiang (Mekong River), China. Journal of Wuhan Botanical Research, 27, 277-289. (in Chinese with English abstract)
[吴玉虎 (2009) 澜沧江源区种子植物区系研究. 武汉植物学研究, 27, 277-289.]
[36] Wu ZY (1998) Flora of Tibet. Science Press, Beijing. (in Chi¬nese)
[吴征镒 (1998) 西藏植物志. 科学出版社, 北京.]
[37] Wu ZY, Sun H, Zhou ZK, Li DZ, Peng H (2010) Floristics of Seed Plants from China. Science Press, Beijing. (in Chinese)
[吴征镒, 孙航, 周浙昆, 李德铢, 彭华 (2010) 中国种子植物区系地理. 科学出版社, 北京.]
[38] Wu ZY, Zhou ZK, Sun H, Li DZ, Peng H (2006) The Areal- types of Seed Plants and Their Origin and Differentiation. Yunnan Science and Technology Press, Kunming. (in Chi¬nese)
[吴征镒, 周浙昆, 孙航, 李德铢, 彭华 (2006) 种子植物分布区类型及其起源和分化. 云南科技出版社, 昆明.]
[39] Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, USA, 114, 3444-3451.
[40] Xu B, Li ZM, Sun H (2014) Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains, SW China. Journal of Systematics and Evolu¬tion, 52, 271-279.
[41] Yan YJ, Yang X, Tang ZY (2013) Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai- Tibetan Plateau. Ecology and Evolution, 3, 4584-4595.
[42] Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Molecular Ecology, 17, 5135-5145.
[43] Yang WJ, Ma KP, Kreft H (2013) Geographical sampling bias in a large distributional database and its effects on species richness-environment models. Journal of Biogeography, 40, 1415-1426.
[44] Yu HB, Zhang YL, Liu LS, Qi W, Li SC, Hu ZJ (2015) Com¬bining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the Late Quaternary in Himalayan hemlock. Ecology and Evolution, 5, 5781-5791.
[45] Yu HB, Zhang YL, Wang ZF, Liu LS, Chen Z, Qi W (2017) Diverse range dynamics and routes of plants on the Tibetan Plateau during the Late Quaternary. PLoS ONE, 12, e0177101.
[46] Yu WB, Liu ML, Wang H, Mill RR, Lee RH, Yang JB, Li DZ (2015) Towards a comprehensive phylogeny of the large temperate genus Pedicularis (Orobanchaceae), with an emphasis on species from the Himalaya-Hengduan Mountains. BMC Plant Biology, 15, 176.
[47] Zhang DC, Ye JX, Sun H (2016) Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. Journal of Biogeography, 43, 2465-2476.
[48] Zhang JQ, Meng SY, Allen GA, Wen J, Rao GY (2014) Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Molecular Phylogenetics and Evolution, 77, 147-158.
[49] Zhang YL, Li BY, Zheng D (2002) A discussion on the bound¬ary and area of the Tibetan Plateau in China. Geographical Research, 21, 1-8. (in Chinese with English abstract)
[张镱锂, 李炳元, 郑度 (2002) 论青藏高原范围与面积. 地理研究, 21, 1-8.]
[50] Zhu H (2015) Biogeography of Shangri-la flora in southwestern China. Phytotaxa, 203, 231-244.
[1] 土艳丽,王力平,王喜龙,王林林,段元文. (2019) 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位. 生物多样性, 27(3): 306-313.
[2] 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. (2019) 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响. 植物生态学报, 43(1): 77-84.
[3] 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚. (2018) 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应. 植物生态学报, 42(6): 629-639.
[4] 周彤,曹入尹,王少鹏,陈晋,唐艳鸿. (2018) 中国草地和欧洲木本植物返青期对气温和降水变化的响应: 基于生存分析的研究. 植物生态学报, 42(5): 526-538.
[5] 耿晓东, 旭日, 刘永稳. (2018) 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应. 植物生态学报, 42(3): 397-405.
[6] 蒋志刚, 李立立, 胡一鸣, 胡慧建, 李春旺, 平晓鸽, 罗振华. (2018) 青藏高原有蹄类动物多样性和特有性: 演化与保护. 生物多样性, 26(2): 158-170.
[7] 崔绍朋, 罗晓, 李春旺, 胡慧建, 蒋志刚. (2018) 基于MaxEnt模型预测白唇鹿的潜在分布区. 生物多样性, 26(2): 171-176.
[8] 胡一鸣, 李玮琪, 蒋志刚, 刘务林, 梁健超, 林宜舟, 黄志文, 覃海华, 金崑, 胡慧建. (2018) 羌塘、可可西里无人区野牦牛种群数量和分布现状. 生物多样性, 26(2): 185-190.
[9] 乔慧捷, 汪晓意, 王伟, 罗振华, 唐科, 黄燕, 杨胜男, 曹伟伟, 赵新全, 江建平, 胡军华. (2018) 从自然保护区到国家公园体制试点: 三江源国家公园环境覆盖的变化及其对两栖爬行类保护的启示. 生物多样性, 26(2): 202-209.
[10] 肖兰, 张琳婷, 杨盛昌, 郑志翰, 姜德刚. (2018) 厦门近岸海域无居民海岛植物区系和物种组成相似性. 生物多样性, 26(11): 1212-1222.
[11] 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. (2018) 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 42(1): 126-132.
[12] 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合. (2018) 土壤含水量调控高寒草原生态系统N2O排放对增温的响应. 植物生态学报, 42(1): 105-115.
[13] 苟小林, 周青平, 陈有军, 魏小星, 涂卫国. (2018) 青藏高原不同气候区高寒沙地两种优势植物及其根际土壤的养分特征. 植物生态学报, 42(1): 133-142.
[14] 宋文琦, 朱良军, 张旭, 王晓春, 张远东. (2018) 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较. 植物生态学报, 42(1): 66-77.
[15] 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. (2018) 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子. 植物生态学报, 42(1): 6-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed