生物多样性 ›› 2017, Vol. 25 ›› Issue (5): 504-512.doi: 10.17520/biods.2016349

• 神农架世界自然遗产地专题 • 上一篇    下一篇

湖北神农架国家级自然保护区森林和川金丝猴栖息地的保护成效

王翠玲1, 2, 臧振华1, 邱月1, 2, 邓舒雨1, 2, 冯朝阳3, 谢宗强1, 徐文婷1, 刘蕾4, 陈全胜1, 申国珍1, *()   

  1. 1 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2 中国科学院大学, 北京 100049
    3 中国环境科学研究院国家环境保护区域生态过程与功能评估重点实验室, 北京 100012
    4 天津泰达园林规划设计院有限公司, 天津 300457
  • 收稿日期:2016-12-11 接受日期:2017-02-20 出版日期:2017-05-20
  • 通讯作者: 申国珍 E-mail:snj@ibcas.ac.cn
  • 基金项目:
    基金项目: 中国科学院野外站联盟项目(KFJ-SW-YW028-01)、国家重点研发计划(2016YFC050330304)和科技基础性工作专项(2015FY1103002)

The effectiveness of Shennongjia National Nature Reserve in conserving forests and habitat of Sichuan snub-nosed monkey

Cuiling Wang1, 2, Zhenhua Zang1, Yue Qiu1, 2, Shuyu Deng1, 2, Zhaoyang Feng3, Zongqiang Xie1, Wenting Xu1, Lei Liu4, Quansheng Chen1, Guozhen Shen1, *()   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012
    4 Tianjin TEDA Institute of Landscape Planning Design, Tianjin 300457
  • Received:2016-12-11 Accepted:2017-02-20 Online:2017-05-20
  • Contact: Shen Guozhen E-mail:snj@ibcas.ac.cn

自然保护区是保护生物多样性最有效的方式之一, 但是近年来自然保护区的保护成效正受到越来越多的质疑, 已成为保护生物学研究中急需考虑的问题, 也是目前我国自然保护区建设过程中面临的重要挑战。本研究以湖北神农架国家级自然保护区为研究对象, 基于该保护区1980年、1990年、2010年、2015年的土地利用数据, 结合DEM数据和川金丝猴(Rhinopithecus roxellana hubeiensis)分布及行为特征数据, 应用层次分析法(AHP法)和集合种群容量(metapopulation capacity), 分析了神农架保护区自建立以来(1980-2015)森林的面积变化、驱动因素以及川金丝猴栖息地面积和破碎化动态格局, 论证了神农架保护区对森林和川金丝猴栖息地的保护成效。结果表明, 神农架保护区自建立以来, 保护区内森林面积增加了34.27%, 森林覆盖度由47.94%上升到64.36%, 增加了16.42%, 其中82.77%的新增森林为灌木林和疏林转变而来; 川金丝猴最适宜栖息地面积增加了17.70%, 集合种群容量增加了515.17%, 最适宜栖息地的破碎化程度显著降低。天然林保护工程(the Natural Forest Conservation Program, NFCP)和退耕还林工程(the Sloping Land Conversion Program, SLCP)实施后, 保护区内森林面积增加了23.24%, 森林覆盖度增加了12.77%, 川金丝猴最适宜栖息地面积增加了14.29%, 集合种群容量增加了367.20%。本研究结果表明, 神农架保护区在森林和旗舰种栖息地保护方面, 均取得了很好的保护成效。

关键词: 神农架自然保护区, 保护成效, 森林, 栖息地, 集合种群容量

Nature reserves are a cornerstone of global conservation. Although the network of global protected areas has expanded substantially over the last few decades, many protected areas are not effective and the use of protected areas as a conservation tool has been criticized due to its inefficiency. Understanding which institutional conditions of protected areas are effective is therefore a key research priority. Shennongjia National Nature Reserve offers a fascinating case to investigate the effectiveness of protected areas in China. This reserve is exceptionally important for conservation as it harbors the remaining subtropical mixed broadleaved evergreen and deciduous forests in the northern hemisphere, numerous endemic and endangered species, and viable populations of the snub-nosed monkey (Rhinopithecus roxellana hubeiensis). From an institutional perspective, Shennongjia Nature Reserve experienced a heavily exploited deforestation period and forest cover rebounded since the establishment of the reserve and the implementation of the Natural Forest Conservation Program (NFCP) and the Sloping Land Conversion Program (SLCP). We assessed the effectiveness of the Shennongjia Nature Reserve in conserving forests and habitat of the snub-nosed monkey based on landuse datasets of 1980, 1990, 2010 and 2015, respectively; combining DEM, distribution and behavioral characteristics of the snub-nosed monkey, and constructing the criterion of the survival function of the snub-nosed monkey and metapopulation capacity. Results showed that the forest area increased by 34.27% and forest coverage increased 16.42%, of which 82.77% of the newly gained forest recovered from shrubs and sparse forests since the establishment of the reserve. The area of the most suitable habitat for the snub-nosed monkey increased 17.70%, and metapopulation capacity of the habitat increased 515.17%. Furthermore, since the implementation of NFCP and SLCP, the forest area and forest coverage increased 23.24% and 12.77%, respectively, the most suitable habitat area for the snub-nosed monkey increased 14.29%, and the metapopulation capacity increased 367.20%. Our results indicate that the Shennongjia Nature Reserve is efficient for forest conservation and snub-nosed monkey habitat provision.

Key words: nature reserve, conservation effectiveness, Shennongjia, snub-nosed monkey habitat, metapopulation capacity

图1

神农架国家级自然保护区村庄与川金丝猴分布图"

表1

神农架川金丝猴栖息地适宜性评价指标"

最适宜 Most suitable 适宜 Suitable 不适宜 Unsuitable 权重 Weight
非生物因子 Abiotic factors
海拔 Elevation (m) 2,000-2,400 2,400-2,600 ≥2,600, <2,000 0.032
坡度 Slope 30°-45° ≥45° <30° 0.081
坡向 Aspect 半阴半阳坡 Semi-shady slope 阳坡 Sunny slope 阴坡 Shady slope 0.01
生物因子 Biotic factors
植被 Vegetation 有林地 Forest land 其他林地 Other forest 其他 Others 0.557
人类活动因子 Human activities
距道路的距离 Distance from road (m) ≥1,000 500-1,000 <500 0.08
距村庄的距离 Distance from villages (m) ≥1,000 500-1,000 <500 0.24

图2

川金丝猴扩散距离函数"

图3

神农架保护区森林动态变化"

图4

神农架保护区森林新增(A)和减少(B)部分的驱动因素"

图5

川金丝猴适宜栖息地变化。λM代表集合种群容量。"

[1] Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences, USA, 105, 16089-16094.
[2] Bowker JN, Vos A, Ament JM, Cumming GS (2017) Effectiveness of Africa’s tropical protected areas for maintaining forest cover. Conservation Biology, 31, 559-569.
[3] Butchart SHM, Clarke M, Smith RJ, Sykes RE, Scharlemann JPW, Harfoot M, Buchanan GM, Angulo A, Balmford A, Bertzky B (2015) Shortfalls and solutions for meeting national and global conservation area targets. Conservation Letters, 8, 329-337.
[4] Cao M, Peng L, Liu S (2015) Analysis of the network of protected areas in China based on a geographic perspective: current status, issues and integration. Sustainability, 7, 15617-15631.
[5] Carranza T, Balmford A, Kapos V, Manica A (2014) Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conservation Letters, 7, 216-223.
[6] Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE (2000) Consequences of changing biodiversity. Nature, 405, 234-242.
[7] Chen YH, Zhang J, Jiang JP, Nielsen SE, He FL (2017) Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Diversity and Distributions, 23, 146-157.
[8] Eklund J, Blanchet FG, Nyman J, Rocha R, Virtanen T, Cabeza M (2016) Contrasting spatial and temporal trends of protected area effectiveness in mitigating deforestation in Madagascar. Biological Conservation, 203, 290-297.
[9] Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G (2008) The ecological performance of protected areas. Annual Review of Ecology, Evolution, and Systematics, 39, 93-113.
[10] Ge JW, Wang XG (2013) Nature Reserve of Hubei Province. Hubei Science and Technology Press, Wuhan. (in Chinese)
[葛继稳, 王虚谷 (2013) 湖北自然保护区. 湖北科学技术出版社, 武汉.]
[11] Geldmann J, Joppa LN, Burgess ND (2014) Mapping change in human pressure globally on land and within protected areas. Conservation Biology, 28, 1604-1616.
[12] Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature, 404, 755-758.
[13] Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conservation Biology, 16, 666-673.
[14] Hill R, Miller C, Newell B, Dunlop M, Gordon IJ (2015) Why biodiversity declines as protected areas increase: the effect of the power of governance regimes on sustainable landscapes. Sustainability Science, 10, 357-369.
[15] Editorial Committee of Hubei Shennongjia Forestry District Local Chronicles(1996) Shennongjia Chronicles. Hubei Science and Technology Press, Wuhan. (in Chinese)
[湖北省神农架林区地方志编纂委员会(1996) 神农架志 . 湖北科学技术出版社, 武汉.]
[16] Jenkins C, Van Houtan K, Pimm S, Sexton J (2015) US protected lands mismatch biodiversity priorities. Proceedings of the National Academy of Sciences, USA, 112, 5081-5086.
[17] Joppa LN, Loarie SR, Pimm SL (2008) On the protection of “protected areas”. Proceedings of the National Academy of Sciences, USA, 105, 6673-6678.
[18] Joppa LN, Pfaff A (2009) High and far: biases in the location of protected areas. PLoS ONE, 4, e8273.
[19] Joppa LN, Pfaff A (2010) Global protected area impacts. Proceedings of the Royal Society B: Biological Sciences, 278, 1633-1638.
[20] Juffe-Bignoli D, Burgess ND, Bingham H, Belle EMS, de Lima MG, Deguignet M, Bertzky B, Milam AN, Martinez-Lopez J, Lewis E (2014) Protected Planet Report 2014. UNEP-WCMC, Cambridge, UK.
[21] Li BG, Chen C, Ji WH, Ren BP (2001) Seasonal home range changes of the Sichuan snub-nosed monkey (Rhinopithecus roxellana) in the Qinling Mountains of China. Folia Primatologica, 71, 375-386.
[22] Li YM (2007) Terrestriality and tree stratum use in a group of Sichuan snub-nosed monkeys. Primates, 48, 197-207.
[23] Mascia MB, Pailler S (2011) Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conservation Letters, 4, 9-20.
[24] McGuire JL, Lawler JJ, McRae BH, Nuñez TA, Theobald DM (2016) Achieving climate connectivity in a fragmented landscape. Proceedings of the National Academy of Sciences, USA, 113, 7195-7200.
[25] Nolte C, Agrawal A, Silvius KM, Soares-Filho BS (2013) Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proceedings of the National Academy of Sciences, USA, 110, 4956-4961.
[26] Nori J, Torres R, Lescano JN, Cordier JM, Periago ME, Baldo D (2016) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Diversity and Distributions, 22, 1212-1219.
[27] Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Xiao Y, Rao EM (2016) Improvements in ecosystem services from investments in natural capital. Science, 352, 1455-1459.
[28] Pimm SL, Brown JH (2004) Domains of diversity. Science, 304, 831-833.
[29] Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature, 398, 611-615.
[30] Pouzols FM, Toivonen T, Di ME, Kukkala AS, Kullberg P, Kuusterä J, Lehtomäki J, Tenkanen H, Verburg PH, Moilanen A (2014) Global protected area expansion is compromised by projected landuse and parochialism. Nature, 516, 383-386.
[31] Ren GP, Young SS, Wang L, Wang W, Long YC, Wu RD, Li JS, Zhu JG, Yu DW (2015) Effectiveness of China’s national forest protection program and nature reserves. Conservation Biology, 29, 1368-1377.
[32] Ren RM, Yan KH, Su YJ, Li JJ, Zhou Y (2000) Society of Rhinopithecus roxellanae. Peking University Press, Beijing. (in Chinese)
[任仁眉, 严康慧, 苏彦捷, 李进军, 周茵 (2000) 金丝猴的社会. 北京大学出版社, 北京.]
[33] Rodrigues AL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, Da Fonseca GAB, Gaston KJ, Hoffmann M (2004) Effectiveness of the global protected area network in representing species diversity. Nature, 428, 640-643.
[34] Saaty TL (1977) A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234-281.
[35] Sandberger-Loua L, Doumbia J, Rödel MO (2016) Conserving the unique to save the diverse-identifying key environmental determinants for the persistence of the viviparous Nimba toad in a West African World Heritage Site. Biological Conservation, 198, 15-21.
[36] Scherer L, Curran M, Alvarez M (2017) Expanding Kenya’s protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity. Conservation Biology, 31, 302-310.
[37] Schnell JK, Harris GM, Pimm SL, Russell GJ (2013) Estimating extinction risk with metapopulation models of large-scale fragmentation. Conservation Biology, 27, 520-530.
[38] Secretariat of the Convention on Biological Diversity (2014) Global Biodiversity Outlook 4. Montreal, Canada.
[39] Shen GZ, Feng CY, Xie ZQ, Ouyang ZY, Li JQ, Pascal M (2008) Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conservation Biology, 22, 1144-1153.
[40] Shen GZ, Pimm SL, Feng CY, Ren GF, Liu YP, Xu WT, Li JQ, Si XF, Xie ZQ (2015) Climate change challenges the current conservation strategy for the giant panda. Biological Conservation, 190, 43-50.
[41] Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L (2004) Extinction risk from climate change. Nature, 427, 145-148.
[42] Tie J (2013) The Plant Composition in the Habitat and Food resources of Rhinopithecus roxellana in Shennongjia, China. China Forestry Publishing House, Beijing. (in Chinese)
[铁军 (2013) 神农架川金丝猴栖息地植物特性和食源植物. 中国林业出版社, 北京.]
[43] Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecology Letters, 10, 219-229.
[44] Wang H, Lü Z, Gu L, Wen C (2015) Observations of China’s forest change (2000-2013) based on Global Forest Watch dataset. Biodiversity Science, 23, 575-582. (in Chinese with English abstract)
[王昊, 吕植, 顾垒, 闻丞 (2015) 基于Global Forest Watch观察2000-2013年间中国森林变化. 生物多样性, 23, 575-582.]
[45] Watson JM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature, 515, 67-73.
[46] Wu RD, Zhang S, Yu DW, Zhao P, Li XH, Wang LZ, Yu Q, Ma J, Chen A, Long YC (2011) Effectiveness of China’s nature reserves in representing ecological diversity. Frontiers in Ecology and the Environment, 9, 383-389.
[47] Xiang ZF, Yu Y, Yang M, Yang JY, Liao MY, Li M (2011) Does flagship species tourism benefit conservation? A case study of the golden snub-nosed monkey in Shennongjia National Nature Reserve. Chinese Science Bulletin, 56, 1784-1789. (in Chinese with English abstract)
[向左甫, 禹洋, 杨鹛, 杨敬元, 廖明尧, 李明 (2011) 神农架保护区的川金丝猴旗舰物种生态旅游有利于自然保护吗? 科学通报, 56, 1784-1789.]
[48] Xie ZQ, Shen GZ, Zhou YB, Fan DY, Xu WT, Gao XM, Du YJ, Xiong GM, Zhao CM, Zhu Y, Lai JS (2017) The outstanding universal value and conservation of Shennongjia World Natural Heritage Site. Biodiversity Science, 25, 490-497. (in Chinese with English abstract)
[谢宗强, 申国珍, 周友兵, 樊大勇, 徐文婷, 高贤明, 杜彦君, 熊高明, 赵常明, 祝燕, 赖江山 (2017) 神农架世界自然遗产地的全球突出普遍价值及其保护. 生物多样性, 25, 490-497.]
[49] Xu WH, Ouyang ZY, Viña A, Zheng H, Liu JG, Xiao Y (2006) Designing a conservation plan for protecting the habitat for giant pandas in the Qionglai Mountain range, China. Diversity and Distributions, 12, 610-619.
[50] Zhang PC, Shao GF, Zhao G, Le MDC, Parker GR, Dunning JB, Li QL (2000) China’s forest policy for the 21st century. Science, 288, 2135-2136.
[51] Zhu ZQ, Song ZS (1999) Scientific Survey of Shennongjia Nature Reserve. China Forestry Publishing House, Beijing. (in Chinese)
[朱兆泉, 宋朝枢 (1999) 神农架自然保护区科学考察集. 中国林业出版社, 北京.]
[1] 肖凌云, 程琛, 万华伟, 张德海, 王永财, 才旦, 侯鹏, 李娟, 杨欣, 吕植, 刘玉平. (2019) 三江源地区雪豹保护优先区规划. 生物多样性, 27(9): 943-950.
[2] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[3] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[4] 张雪皎, 高贤明, 吉成均, 康慕谊, 王仁卿, 岳明, 张峰, 唐志尧. (2019) 中国北方5种栎属树木多度分布及其对未来气候变化的响应. 植物生态学报, 43(9): 774-782.
[5] 邹安龙,李修平,倪晓凤,吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎林树木生长的影响. 植物生态学报, 43(9): 783-792.
[6] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[7] 陈星, 赵联军, 胡茜茜, 罗春平, 梁春平, 蒋仕伟, 梁磊, 郑维超, 官天培. (2019) 基于地形的牲畜空间利用特征及干扰评价——以王朗国家级自然保护区为例. 生物多样性, 27(6): 630-637.
[8] 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. (2019) 全球森林土壤微生物生物量碳氮磷化学计量的季节动态. 植物生态学报, 43(6): 532-542.
[9] 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. (2019) 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 43(4): 352-364.
[10] 冯婵莹, 郑成洋, 田地. (2019) 氮添加对森林植物磷含量的影响及其机制. 植物生态学报, 43(3): 185-196.
[11] 张振振, 赵平, 张锦秀, 斯瑶. (2019) 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较. 植物生态学报, 43(2): 131-138.
[12] 温纯,金光泽. (2019) 功能多样性对典型阔叶红松林生产力的影响. 植物生态学报, 43(2): 94-106.
[13] 孙晶琦, 陈泉, 李航宇, 常艳芬, 巩合德, 宋亮, 卢华正. (2019) 附生蕨类植物的克隆性研究进展. 生物多样性, 27(11): 1184-1195.
[14] 王璇, 陈国科, 郭柯, 马克平. (2019) 1:100万中国植被图森林和灌丛群系类型的补充资料. 生物多样性, 27(10): 1138-1142.
[15] 池秀莲,王庆刚,郭强,杨弦,唐志尧. (2019) 古田山常绿阔叶林不同演替群落的萌生特征. 生物多样性, 27(1): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed