生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 932-939.doi: 10.17520/biods.2016096

• • 上一篇    下一篇

Metabarcoding技术在真菌多样性研究中的应用

曹云1, 2, 沈文静2, 陈炼3, 胡飞龙2, 周蕾4, 徐海根2, *()   

  1. 1 南京大学生命科学学院, 南京 210093
    2 环境保护部南京环境科学研究所国家环境保护生物安全重点实验室, 南京 210042
    3 江苏第二师范学院生命科学与化学化工学院, 南京 210013
    4 南京林业大学林学院, 南京 210037
  • 收稿日期:2016-04-01 接受日期:2016-05-27 出版日期:2016-08-20
  • 通讯作者: 徐海根 E-mail:xhg@nies.org
  • 基金项目:
    国家自然科学基金(31500455)、中国博士后面上基金(2015M571663)和环保公益性行业科研专项(201409061)

Application of metabarcoding technology in studies of fungal diversity

Yun Cao1, 2, Wenjing Shen2, Lian Chen3, Feilong Hu2, Lei Zhou4, Haigen Xu2, *()   

  1. 1 School of Life Sciences, Nanjing University, Nanjing 210093
    2 State Environmental Protection Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042
    3 College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University, Nanjing 210013
    4 College of Forestry, Nanjing Forestry University, Nanjing 210037
  • Received:2016-04-01 Accepted:2016-05-27 Online:2016-08-20
  • Contact: Xu Haigen E-mail:xhg@nies.org

由于受到气候变化、土地利用变化及环境污染等诸多因素的干扰, 真菌多样性受到不容忽视的威胁, 亟需得到保护。构建物种数据库是实现真菌多样性研究和保护的重要前提。近年来兴起的DNA条形码及metabarcoding技术能够在很大程度上弥补传统鉴定方法的缺陷, 可对真菌物种进行大规模、准确、快速、高效地鉴定。本文梳理了metabarcoding技术在真菌物种多样性评估、真菌多样性影响机制和真菌古生态重建等研究中的应用, 同时强调了metabarcoding技术用于真菌多样性研究尚处于初期阶段, 在构建有效参照数据库、优化实验流程以及升级生物信息学工具等方面仍需要进一步的完善。建议加强真菌分类学家、生态学家以及计算机工具研发工程师之间的合作, 共同解决metabarcoding技术在真菌多样性研究及应用中面临的问题, 为宏观尺度上真菌多样性保护提供更加科学的依据。

关键词: metabarcoding, DNA条形码, 真菌多样性保护, 物种鉴定, 高通量测序

Fungal diversity is threatened by climate change, land-use change, and environmental pollution, and requires urgent conservation action. Construction of the fungal species database is an important prerequisite for the study and conservation of fungal diversity. Recently developed DNA barcoding and metabarcoding technologies can provide accurate, rapid, and highly efficient identification on a large scale, and to a large extent compensate for the defects of traditional identification methods. In this paper, we review the application of metabarcoding in fungal species diversity assessment, the study of mechanisms underlying fungal diversity, and the reconstruction of fungal palaeoecology. We emphasize that the application of metabarcoding technology in fungal diversity studies is still in the primary phase, and greater efforts are needed in the construction of reliable reference databases, the optimization of experimental procedures, and updates of bioinformatics tools. Hence, we suggest enhancing cooperation among fungal taxonomists, ecologists, and computer technicians. They should work together to address problems in fungal diversity studies via metabarcoding, which would provide more sound scientific evidence for fungal diversity conservation on a large scale.

Key words: metabarcoding, DNA barcoding, fungal diversity conservation, species identification, high- throughput sequencing

[1] Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics, 6, 189-196.
[2] Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Review of Palaeobotany and Palynology, 141, 225-230.
[3] Arnolds E (2001) The future of fungi in Europe: threats, conservation and management. In: Fungal Conservation: Issues and Solutions (eds Moore D, Nauta MM, Evans SE, Rotheroe M), pp. 64-80. Cambridge University Press, Cambridge.
[4] Bálint M, Schmidt PA, Sharma R, Thines M, Schmitt I (2014) An Illumina metabarcoding pipeline for fungi. Ecology and Evolution, 4, 2642-2653.
[5] Bazzicalupo AL, Bálint M, Schmitt I (2013) Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecology, 6, 102-109.
[6] Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99-108.
[7] Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
[8] Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G (2013) Fungal palaeodiversity revealed using high-throu- ghput metabarcoding of ancient DNA from arctic permafrost. Environmental Microbiology, 15, 1176-1189.
[9] Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biology Reviews, 24, 1-16.
[10] Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk P, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13, 218-224.
[11] Boessenkool S, Mcglynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, Nemomissa S, Brochmann C, Popp M (2014) Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conservation Biology, 28, 446-455.
[12] Brasier CM (1996) Low genetic diversity of the Ophiostoma novo-ulmi population in North America. Mycologia, 88, 951-964.
[13] Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SC (2011) Discriminating plant species in a local temperate flora using the rbcL + matK DNA barcode. Methods in Ecology and Evolution, 2, 333-340.
[14] Cannon P (1997) Strategies for rapid assessment of fungal diversity. Biodiversity and Conservation, 6, 669-680.
[15] CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA, 106, 12794-12797.
[16] Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science, 325, 682-683.
[17] Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytologist, 196, 510-519.
[18] Crous P, Braun U, Schubert K, Groenewald J (2007) Delimiting Cladosporium from morphologically similar genera. Studies in Mycology, 58, 33-56.
[19] Cui X, Hu J, Wang J, Yang J, Lin X (2016) Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Applied Soil Ecology, 98, 140-149.
[20] Dannemiller KC, Reeves D, Bibby K, Yamamoto N, Peccia J (2014) Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). Journal of Basic Microbiology, 54, 315-321.
[21] Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 40-50.
[22] Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53-58.
[23] Ferro M, Antonio EA, Souza W, Bacci M (2014) ITScan: a web-based analysis tool for internal transcribed spacer (ITS) sequences. BMC Research Notes, 7, 857.
[24] Foufopoulos J, Kilpatrick AM, Ives AR (2011) Climate change and elevated extinction rates of reptiles from Mediterranean Islands. The American Naturalist, 177, 119.
[25] Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences, USA, 95, 388-393.
[26] Geml J, Gravendeel B, van der Gaag KJ, Neilen M, Lammers Y, Raes N, Semenova TA, de Knijff P, Noordeloos ME (2014) The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS ONE, 9, e99852.
[27] Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI, Schonrogge K (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution, 6, 973-980.
[28] Halme P, Heilmann-Clausen J, Rämä T, Kosonen T, Kunttu P (2012) Monitoring fungal biodiversity—towards an integrated approach. Fungal Ecology, 5, 750-758.
[29] Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research, 95, 641-655.
[30] Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105, 1422-1432.
[31] Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodiversity and Conservation, 21, 2425-2433.
[32] Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321.
[33] Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157.
[34] Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16, 1245-1257.
[35] Krishnamurthy PK, Francis RA (2012) A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation, 21, 1901-1919.
[36] Kumar S, Carlsen T, Mevik BH, Enger P, Blaalid R, Shalchian-Tabrizi K, Kauserud H (2011) CLOTU: an online pipeline for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation. BMC Bioinformatics, 12, 182.
[37] Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123.
[38] Li HY, Shen M, Zhou ZP, Li T, Wei YL, Lin LB (2012) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Diversity, 54, 79-86.
[39] Liu LY, Cui HF, Tian G (2013) Application of high throughput sequencing in metagenomics. Chinese Medicinal Biotechnology, 8(3), 196-200 (in Chinese)
[刘莉扬, 崔鸿飞, 田埂 (2013) 高通量测序技术在宏基因组学中的应用. 中国医药生物技术, 8(3), 196-200.]
[40] Lydolph MC, Jacobsen J, Arctander P, Gilbert MTP, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Applied and Environmental Microbiology, 71, 1012-1017.
[41] Lynch MD, Bartram AK, Neufeld JD (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6, 2067-2077.
[42] Mueller RC, Paula FS, Mirza BS, Rodrigues J, Nüsslein K, Bohannan B (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The ISME Journal, 8, 1548-1550.
[43] Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2015) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change, 6, 182-186.
[44] Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296, 97-101.
[45] Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE, 1, e59.
[46] Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. The ISME Journal, 7, 1696-1709.
[47] Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Permafrost Soils (eds Margesin R), pp. 85-95. Springer Verlag, Berlin, Heidelberg.
[48] Rosa LH, Vieira MdLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiology Ecology, 73, 178-189.
[49] Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA, 109, 6241-6246.
[50] Seifert KA (2009) Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83-89.
[51] Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia, 101, 823-832.
[52] Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Renfurm R, Verkley GJM, Groenewald M, Chaduli D, Lomascolo A, Welti S, Lesage-Meessen L, Favel A, Al-Hatmi AMS, Damm U, Yilmaz N, Houbraken J, Lombard L, Quaedvlieg W, Binder M, Vaas LAI, Vu D, Yurkov A, Begerow D, Roehl O, Guerreiro M, Fonseca A, Samerpitak K, van Diepeningen AD, Dolatabadi S, Moreno LF, Casaregola S, Mallet S, Jacques N, Roscini L, Egidi E, Bizet C, Garcia-Hermoso D, Martín MP, Deng S, Groenewald JZ, Boekhout T, de Beer ZW, Barnes I, Duong TA, Wingfield MJ, de Hoog GS, Crous PW, Lewis CT, Hambleton S, Moussa TAA, Al-Zahrani HS, Almaghrabi OA, Louis-Seize G, Assabgui R, McCormick W, Omer G, Dukik K, Cardinali G, Eberhardt U, de Vries M, Robert V (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia, 35, 242-263.
[53] Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS ONE, 9, e107783.
[54] Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3, 65-76.
[55] Taylor TN, Osborn JM (1996) The importance of fungi in shaping the paleoecosystem. Review of Palaeobotany and Palynology, 90, 249-262.
[56] Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science, 346, 1256688.
[57] Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 188, 291-301.
[58] Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 12, 424-440.
[59] Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, USA, 102, 8245-8250.
[60] Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza, 22, 81-97.
[61] van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
[62] van Geel B, Guthrie RD, Altmann JG, Broekens P, Bull ID, Gill FL, Jansen B, Nieman AM, Gravendeel B (2011) Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth. Quaternary Science Reviews, 30, 2289-2303.
[63] Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources, 16, 388-401.
[64] Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267.
[65] White JR, Maddox C, White O, Angiuoli SV, Fricke WF (2013) CloVR-ITS: automated internal transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal microbiota. Microbiome, 1, 6.
[66] Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science, 314, 1261-1265.
[67] Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3, 613-623.
[68] Zhang T, Yao YF (2015) Endophytic fungal communities associated with vascular plants in the high Arctic zone are highly diverse and host-plant specific. PLoS ONE, 10, e0130051.
[1] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化[J]. 生物多样性, 2019, 27(5): 557-566.
[2] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[3] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[4] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[5] 胡建霖,刘志芳,慈秀芹,李捷. DNA条形码在热带龙脑香科树种鉴定中的应用[J]. 植物学报, 2019, 54(3): 350-359.
[6] 舒江平, 罗俊杰, 韦宏金, 严岳鸿. 基于模式产地的分子证据澄清南平鳞毛蕨的分类学地位[J]. 植物学报, 2018, 53(6): 793-800.
[7] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228.
[8] 邓晓娟, 刘建利, 闫兴富, 刘培贵. 用传统分离培养法和高通量测序技术分析印度块菌子囊果内细菌的群落结构[J]. 生物多样性, 2018, 26(12): 1318-1324.
[9] 刘青青, 董志军. 基于线粒体COI基因分析钩手水母的群体遗传结构[J]. 生物多样性, 2018, 26(11): 1204-1211.
[10] 李巧丽, 延娜, 宋琼, 郭军战. 鲁桑叶绿体基因组序列及特征分析[J]. 植物学报, 2018, 53(1): 94-103.
[11] 宋慧芳, 刘海双, 杨义明, 范书田, 李昌禹, 艾军. 山葡萄种质资源DNA条形码通用序列的筛选[J]. 植物学报, 2017, 52(6): 723-732.
[12] 郝金凤, 张晓红, 王昱淞, 刘金林, 智永超, 李新江. 白洋淀湿地蝗虫多样性调查及DNA条形码应用研究[J]. 生物多样性, 2017, 25(4): 409-417.
[13] 慈秀芹, 李捷. 系统发育多样性在植物区系研究与 生物多样性保护中的应用[J]. 生物多样性, 2017, 25(2): 175-181.
[14] 魏亚男, 王晓梅, 姚鹏程, 陈小勇, 李宏庆. 比较不同DNA条形码对中国海岸带耐盐植物的识别率[J]. 生物多样性, 2017, 25(10): 1095-1104.
[15] 张静, 李渊, 宋娜, 林龙山, 高天翔. 我国沿海棱鳀属鱼类的物种鉴定与系统发育[J]. 生物多样性, 2016, 24(8): 888-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed