生物多样性 ›› 2016, Vol. 24 ›› Issue (12): 1381-1389.doi: 10.17520/biods.2015365

• • 上一篇    下一篇

三叶鬼针草与不同本地植物竞争对土壤 微生物和土壤养分的影响

闫静1, 张晓亚1, 陈雪2, 王月1, 张风娟1, , A;*(), 万方浩3, , A;*()   

  1. 1 .河北大学生命科学学院, 河北保定 071002
    2 .河北师范大学汇华学院, 石家庄 050091
    3 .中国农业科学院植物保护研究所, 植物病虫害生物学国家重点实验室, 北京 100193
  • 收稿日期:2015-12-23 接受日期:2016-05-16 出版日期:2016-12-20
  • 通讯作者: 张风娟,万方浩 E-mail:fengjuanzhang@126.com;wanfanghaocaas@163.com
  • 基金项目:
    国家自然基金项目(31172000);河北省自然基金项目(C2015201021,C2015201241)

Effects of rhizosphere soil microorganisms and soil nutrients on competitiveness of Bidens pilosa with different native plants

Jing Yan1, Xiaoya Zhang1, Xue Chen2, Yue Wang1, Fengjuan Zhang1, *(), Fanghao Wan3, *()   

  1. 1 College of Life Sciences, Hebei University, Baoding, Hebei 071002
    2 Huihua College of Hebei Normal University, Shijiazhuang 050091
    3 Institute of Plant Protection (South Campus), Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
  • Received:2015-12-23 Accepted:2016-05-16 Online:2016-12-20
  • Contact: Zhang Fengjuan,Wan Fanghao E-mail:fengjuanzhang@126.com;wanfanghaocaas@163.com

入侵植物三叶鬼针草(Bidens pilosa)对我国农牧业生产造成了重大的损失。本文主要研究三叶鬼针草入侵与不同本地植物竞争对土壤微生物群落结构和土壤养分的影响。利用磷脂脂肪酸方法(phospholipid fatty acids, PLFAs)测定土壤微生物群落组成, 同时测定土壤养分和酶活性, 并利用Canoco4.5软件分析了土壤微生物、土壤养分和土壤酶活性的相关性。结果表明: (1)三叶鬼针草对革兰氏阳性菌、革兰氏阴性菌、丛枝菌根真菌等土壤微生物具有较强的聚集能力, 且其根际土壤聚集的微生物类群与本地植物种类密切相关。(2)三叶鬼针草入侵显著增加了入侵地土壤的有机碳含量, 降低了铵态氮的含量; 土壤中的速效钾、速效磷和硝态氮的含量则与本地植物种类密切相关。(3)相关性分析表明, 16:00和16:1 ω5c对铵态氮的含量影响较大, 而三叶鬼针草入侵地16:00和16:1 ω5c的含量显著高于裸土对照, 进而推测这一状况导致了铵态氮含量的降低。(4) 15:1 anteiso A和18:1 ω5c与速效钾的含量呈显著正相关, 而其含量在狗尾草(Setaria viridis)中显著高于其他处理, 三叶鬼针草与狗尾草混种处理中土壤中速效钾的含量高于其他处理。以上结果说明, 三叶鬼针草通过改变土壤微生物群落结构影响了土壤酶活性和土壤养分, 且这种改变与入侵地本地植物种类有关。

关键词: 三叶鬼针草, 本地植物, 土壤微生物, 土壤养分, 土壤酶活性

The invasive plant Bidens pilosa has caused losses to agriculture and livestock. We studied the effects of B. pilosa on rhizosphere soil microorganisms and soil nutrients of different native species. The soil microbial species were examined using phospholipid fatty acid (PLFA), and the concentrations of soil nutrients and the activities of soil enzyme activities were measured. Correlation analysis of soil microbial, soil nutrients, and soil enzyme activities was used in Canoco 4.5. Results showed that B. pilosa had a strong ability to aggregate soil microorganisms such as gram-positive bacterium (G+), gram-negative bacterium (G-), and arbuscular mycorrhizal fungi (AMF). The microbial species in the rhizosphere soil of B. pilosa was closely related to the native plant species. Bidens pilosa significantly increased the concentration of organic carbon, while decreasing the concentration of ammonium. The concentrations of available potassium, available phosphorus, and nitrate were strongly related to the native plant species. Correlation analysis showed that 16:00 and 16:1ω5c had a significant influence on the concentration of ammonium. The concentrations of 16:00 and 16:1 ω5c in the rhizosphere soil of B. pilosa were significantly higher than that in the soil of the control, which may lead to the decrease of the concentration of ammonium in the rhizosphere soil of B. pilosa. The concentrations of 15:1 anteiso A and 18:1 ω5c were significantly positively correlated with the concentration of available potassium, and its content were significantly greater than the other treatments in Setaria viridis. The concentration of available potassium in the competition treatment between B. pilosa and S. viridis was significantly higher than the other treatments. The above results show that the invasive plant B. pilosa affected soil enzyme activities and soil nutrients via altering microbial communities, and these changes impacted the native plant species.

Key words: Bidens pilosa, native plant species, soil microorganisms, soil nutrient, soil enzymy activity

表1

不同处理样方的植物生长状况(平均值 ± 标准差)。B: 三叶鬼针草; S: 狗尾草; C: 藜; M: 草木樨。"

处理
Treatment
植物
Plant
密度
Density (inds./m2)
生物量
Biomass (kg/m2)
B B 274.00 ± 62.12 0.92±0.22
B+S B 180.00 ± 72.04 0.48 ± 0.16
S 56.00 ± 35.68 0.17 ± 0.05
B+C B 148.00 ± 36.00 0.43 ± 0.11
C 208.00 ± 9.64 0.59 ± 0.09
B+M B 144.00 ± 36.00 0.51 ± 0.01
M 192.00 ± 6.08 0.55 ± 0.01

图1

不同处理三叶鬼针草根际土壤微生物PLFAs总量的变化(P<0.05)。CK: 裸土, 其他各处理的代号见表1。"

图2

三叶鬼针草不同处理根际土壤微生物群落PLFA的主成分分析及载荷因子贡献。各处理的代号见表1。"

表2

不同处理对三叶鬼针草根际不同类群微生物PLFAs量的影响(单位μg/g) (平均值±标准差,)。A: 放线菌; AMF: 丛枝菌根真菌; F: 真菌; G-: 格兰氏阴性菌; G+: 格兰氏阳性菌; P: 放线菌; F/B: 真菌和细菌的比值; G-/G+: 革兰氏阴性菌和革兰氏阳性菌的比值。CK: 裸土, 各处理的代号见表1。不同字母表示多重比较差异显著(P < 0.05)"

处理
Treatment
A AMF F G- G+ P F/B G-/G+
CK 1.21±0.04c 1.48±0.44b 3.63±0.67b 4.01±0.47d 5.04±0.67d 0.37±0.10c 0.80±0.04a 0.12±0.00d
B 1.82±0.07b 14.87±6.69ab 6.28±0.43ab 6.66±0.32b 7.71±0.44b 1.19±0.33ab 0.91±0.06a 0.14±0.00b
B+S 2.29±0.17a 16.96±4.20a 8.40±2.19a 9.11±0.32a 9.73±0.58a 1.41±0.79a 0.92±0.19a 0.15±0.00a
B+C 1.70±0.06b 4.97±1.26ab 4.78±0.05ab 5.32±0.06c 7.35±0.08bc 0.54±0.06bc 0.74±0.00a 0.14±0.00b
B+M 1.73±0.18b 9.08±4.78ab 8.01±4.00a 5.65±0.84c 6.63±0.12c 1.04±0.16abc 1.38±0.33a 0.13±0.00c

表3

三叶鬼针草不同处理根际土壤的养分含量。不同字母表示多重比较差异显著(P < 0.05)。CK: 裸土, 各处理的代号见表1。"

速效钾
Available K
有机碳
Organic carbon
pH 速效磷
Available P
硝态氮
Nitrate N
铵态氮
Ammonium N
CK 221.67±8.62a 6.7.0±0.07c 7.94±0.01c 1.13±0.18c 21.72±1.96c 71.50±1.54a
B 201.33±4.93b 10.34±0.3a 8.26±0.04a 1.77±0.09b 23.65±2.01ab 66.07±0.71bc
B+S 221.67±0.58a 9.46±0.53b 8.09±0.06b 2.52±0.10a 21.51±1.19c 66.41±2.68b
B+C 205.00±1.73b 9.75±0.24b 8.07±0.02b 1.73±0.06b 25.05±0.73a 63.93±1.53c
B+M 198.00±2.65b 9.29±0.09b 7.97±0.09c 2.48±0.28a 20.85±0.71c 64.45±2.13c

表4

三叶鬼针草不同处理根际土壤酶的活性。不同字母表示多重比较差异显著(P < 0.05)。CK: 裸土, 各处理的代号见表1。"

处理
Treatment
蔗糖酶
Invertase
脲酶
Urease
酸性磷酸酶
Acid phosphatase
碱性磷酸酶
Alkaline phosphatase
CK 42.74±0.15d 10.99±0.49e 64.41±0.87d 23.04±0.55d
B 66.13±3.78bc 18.46±0.14a 100.63±1.41b 74.05±1.03a
B+S 61.83±0.65c 12.68±0.57d 103.00±1.87b 66.9±4.65b
B+C 73.33±5.52a 16.02±0.22c 108.67±1.51a 66.32±1.02b
B+M 69.77±3.88ab 16.92±0.09b 96.89±0.62c 59.50±3.03c

图3

三叶鬼针草入侵地PLFAs与土壤养分的典范对应分析(CCA)二维排序"

图4

三叶鬼针草入侵地PLFAs与土壤酶活性典范对应分析(CCA)二维排序, ALP, 碱性磷酸酶; ACP, 酸性磷酸酶。"

[1] ADe LJ, He B, Wang CT, Hu L, Zi HB (2015) Effects of Chenopodium ambrosioides on soil enzyme activity, microorganism quantity and soil nutrient content of three cultivated pastures of rhizosphere soil in northwestern Sichuan. Southwest China Journal of Agricultural Sciences, 28, 815-821.(in Chinese with English abstract)
[阿的鲁骥, 何兵, 王长庭, 胡雷, 字洪标 (2015) 入侵植物土荆芥对川西北高寒草甸3种培育牧草根际土壤酶活性、微生物数量及土壤养分的影响. 西南农业学报,28, 815-821.]
[2] Bååth E, Díaz-Raviña M, Frostegård A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Applied and Environmental Microbiology, 64, 238-245.
[3] Bannert A, Kleineidam K, Wissing L, Mueller-Niggemann C, Vogelsang V, Welzl G, Cao ZH, Schloter M (2011) Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods. Applied and Environmental Microbiology, 77, 6109-6116.
[4] Bao SD (2000) Soil Assay on Properties of Agro Chemistry, 3rd edn, pp. 207-237. China Agriculture Press, Beijing.(in Chinese)
[鲍士旦 (2000) 土壤农化分析(第3版), 207-237页. 中国农业出版社, 北京.]
[5] Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641.
[6] Belnap J, Philips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecological Applications, 11, 1261-1275.
[7] Ben G, Kris F (2015) Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos, 124, 298-306.
[8] Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427, 731-733.
[9] Cantarel AAM, Pommier T, Desclos-Theveniau M, Diquélou S, Dumont M, Grassein F, Kastl E-M, Grigulis K, Laîné P, Lavorel S, Lemauviel-Lavenant S, Personeni E, Schloter M, Poly F (2015) Using plant traits to explain plant-microbe relationships involved in nitrogen acquisition. Ecology, 96, 788-799.
[10] Chen L, Li HN, Yang MH, Wan FH (2011) Influence of invasion of Mikania micrantha and Bidens pilosa to the bacterial community in the root soils. Chinese Agricultural Science Bulletin, 27(8), 63-68.(in Chinese with English abstract)
[陈亮, 李会娜, 杨民和, 万方浩 (2011) 入侵植物薇甘菊和三叶鬼针草对土壤细菌群落的影响.中国农学通报,27(8), 63-68.]
[11] Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology and Biochemistry, 32, 1419-1430.
[12] Du FY, Zhang MM, Ma DW (2007) Preliminary study on the allelopathic effects of Bidens pilosa. China Plant Protection, 27(9), 8-11.(in Chinese with English abstract)
[杜凤移, 张苗苗, 马丹炜 (2007) 三叶鬼针草化感作用的初步研究. 中国植保导刊,27(9), 8-11.]
[13] Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedbacks in the plant-soil system. Annual Review of Environment and Resource, 30, 75-115.
[14] Frostegård Å, Bååth E (1996) The use of phospholipids fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65.
[15] Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 25, 1248-1259.
[16] Godoy O, Valladares F, Castro-Díez P (2012) The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytologist, 195, 912-922.
[17] Grubb PJ (1994) Root competition in soil of different fertility: A paradox resolved? Phytocoenologia, 24, 495-505.
[18] Guan SY (1986) Soil Enzyme and Its Research Methods, pp. 274-339. Agriculture Press, Beijing.(in Chinese)
[关松荫 (1986) 土壤酶及其研究方法,274-339页. 农业出版社, 北京.]
[19] He B, Li RY, Luo MY, Wei HM, Zhang H, Ma DW (2013) Effects of Bidens pilosa of invasive plant on soil ecological system at different developmental stages. Southwest China Journal of Agricultural Sciences, 26, 1953-1956.(in Chinese with English abstract)
[何兵, 李睿玉, 罗曼元, 魏豪梅, 张红, 马丹炜 (2013) 入侵植物三叶鬼针草不同发育期对土壤生态系统的影响.西南农业学报,26, 1953-1956.]
[20] Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 15, 25-36.
[21] Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology, 78, 1966-1975.
[22] Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149.
[23] Hou YP, Liu L, Chu H, Ma SJ, Zhao D, Liang RR (2015) Effects of exotic plant Rhus typhina invasion on soil properties in different forest types. Acta Ecologica Sinica, 35, 5324-5330.(in Chinese with English abstract)
[侯玉平, 柳林, 初航, 马淑杰, 赵丹, 梁荣荣 (2015) 外来植物火炬树入侵对不同林型土壤性质的影响. 生态学报,35, 5324-5330.]
[24] Huenneke L, Hamburg SP, Koide R (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 71, 478-491.
[25] Jia YY, Zhang XY, Yan J, Yin JL, Zhang FJ (2015) Effect of three Asteraceae invasive plants on soil fertility of invaded domain. Journal of Hebei University, 35, 494-502.(in Chinese with English abstract)
[贾月月, 张晓亚, 闫静, 殷吉林, 张风娟 (2015) 3种入侵菊科植物对入侵域土壤肥力的影响. 河北大学学报,35, 494-502.]
[26] Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70.
[27] Kourtev PS, Ehrenfeld JG, Häggelom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166.
[28] Kourtev PS, Huang WZ, Ehrenfeld JG (1999) Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biological Invasions, 1, 237-245.
[29] Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant and Soil, 281, 309-324.
[30] Ma J, Huangfu CH, Yi J, Yang DL (2011) Effects of four replacement plants on nutrient and enzymatic activities of soil invaded by Flaveria bidentis. Ecology and Environmental Sciences, 20, 805-812.(in Chinese with English abstract)
[马杰, 皇甫超河, 易津, 杨殿林 (2011) 4种替代植物对黄顶菊入侵土壤养分和酶活性的影响. 生态环境学报,20, 805-812.]
[31] Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893.
[32] Moreau D, Pivato B, Bru D, Busset H, Deau F, Faivre C, Matejicek A, Strbik F, Philippot L, Mougel C (2015) Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology, 96, 2300-2310.
[33] Niu HB, Liu WX, Wan FH (2007) Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecologica Sinica, 27, 3051-3060.(in Chinese with English abstract)
[牛红榜, 刘万学, 万方浩 (2007) 紫茎泽兰入侵对土壤微生物群落和理化性质的影响. 生态学报,27, 3051-3060.]
[34] Olsson S and Alström S (2000) Characterisation of bacteria in soils under barley monoculture and crop rotation. Soil Biology and Biochemistry, 32, 1443-1451.
[35] Reinhart KO, Callaway RM (2004) Soil biota facilitate exotic Acer invasions in Europe and North America. Ecological Applications, 14, 1737-1745.
[36] Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 15, 1230-1239.
[37] Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011b) Belowground biodiversity effects of plant support aboveground productivity. Ecology Letters, 14, 1001-1009.
[38] Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011a) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 92, 1303-1313.
[39] Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36, 59-69.
[40] Xiao B, Zhou W, Liu WX, Jiang ZL, Wan FH (2014) Feedback of Ageratina adenophora soil microbe on A. adenophora and native plants. Journal of Agricultural Science and Technology, 16, 151-158.(in Chinese with English abstract)
[肖博, 周文, 刘万学, 蒋智霖, 万方浩 (2014) 紫茎泽兰入侵地土壤微生物对紫茎泽兰和本地植物的反馈. 中国农业科技导报,16, 151-158.]
[41] Yan Q, Liu WX, Li HN, Wan FH (2009) Effects of Ageratina adenophora-invaded soil and its extract on upland rice Oryza sativa seed germination and seedling growth. Chinese Journal of Ecology, 28, 879-883.(in Chinese with English abstract)
[严琦, 刘万学, 李会娜, 万方浩 (2009) 紫茎泽兰不同入侵程度的土壤及其提取物对旱稻生长的影响. 生态学杂志,28, 879-883.]
[42] Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in South African fynbos. Restoration Ecology, 12, 44-51.
[43] Yu XJ, Yu D, Lu ZJ, Ma KP (2005) A possible plant invasive mechanism: the invasive species affected the growth of native species by changing microbial communities in his invasive range. Chinese Science Bulletin, 50, 896-903.(in Chinese)
[于兴军, 于丹, 卢志军, 马克平 (2005) 一个可能的植物入侵机制: 入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报,50, 896-903.]
[44] Zhang Q, Yang RY, Tang JJ, Yang HS, Hu SJ, Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE, 5, e12380.]
[45] Zhang TR, Huangfu CH, Bai XM, Yang DL, Li G, Lai X, Zhao JN (2010) Effect of Flaveria bidentis invasion on soil nutrient contents and enzyme activities. Chinese Journal of Ecology, 29, 1353-1358.(in Chinese with English abstract)
[张天瑞, 皇甫超河, 白小明, 杨殿林, 李刚, 赖欣, 赵建宁 (2010) 黄顶菊入侵对土壤养分和酶活性的影响. 生态学杂志,29, 1353-1358.]
[1] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[2] 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. (2019) 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43(2): 174-184.
[3] 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. (2018) 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响. 生物多样性, 26(9): 962-971.
[4] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. (2018) 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 26(9): 972-987.
[5] 邹瓒, 陈劲松, 李洋, 宋会兴. (2018) 光合产物传输方向对蓉城竹根际微生物过程的影响. 植物生态学报, 42(8): 863-872.
[6] 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. (2018) 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42(6): 692-702.
[7] 张媚, 林马水, 曹秀秀, 赵树民, 蒋达青, 王冰璇, 汪石莹, 樊炎迪, 郭明, 林海萍. (2018) 不同经营模式山核桃林地土壤pH值、养分与细菌多样性的差异. 生物多样性, 26(6): 611-619.
[8] 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. (2018) 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征. 植物生态学报, 42(3): 382-396.
[9] 毕艳孟, 孙振钧. (2018) 蚯蚓调控土壤微生态缓解连作障碍的作用机制. 生物多样性, 26(10): 1103-1115.
[10] 吴秀芝, 阎欣, 王波, 刘任涛, 安慧. (2018) 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 42(10): 1022-1032.
[11] 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. (2018) 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 42(1): 126-132.
[12] 苟小林, 周青平, 陈有军, 魏小星, 涂卫国. (2018) 青藏高原不同气候区高寒沙地两种优势植物及其根际土壤的养分特征. 植物生态学报, 42(1): 133-142.
[13] 卢玉鹏, 许纪元, 张晓曦, 王博雅, 谢博, 刘增文. (2017) 林下药用植物淋出物对红桦和杜仲枯落物分解及土壤酶活性的影响. 植物生态学报, 41(6): 639-649.
[14] 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴. (2017) 陆地生态系统地下碳输入与输出过程研究进展. 植物学报, 52(5): 652-668.
[15] 邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令. (2017) UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响. 植物生态学报, 41(4): 471-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed