生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 559-569.doi: 10.17520/biods.2015265

• •    下一篇

对我国分子生态学研究近期发展战略的一些思考

张德兴1, 2()   

  1. 1 中国科学院动物研究所, 北京 100101
    2 中国科学院北京基因组研究所, 北京 100101
  • 收稿日期:2015-08-12 接受日期:2015-09-15 出版日期:2015-09-20
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(30730016)和中国科学院先导专项基金(XDB13030200)

Unorthodox reflections on molecular ecology research in China

De-Xing Zhang1, 2()   

  1. 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    2 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101
  • Received:2015-08-12 Accepted:2015-09-15 Online:2015-09-20
  • About author:

    # Co-first authors

分子生态学是多学科交叉的整合性研究领域, 是运用进化生物学理论解决宏观生物学问题的科学。经过半个多世纪的发展, 本学科已日趋成熟, 它不仅已经广泛渗透到宏观生物学的众多学科领域, 而且已经成为连接和融合很多不同学科的桥梁, 是目前最具活力的研究领域之一。其研究的范畴, 从最基础的理论和方法技术, 到格局和模式的发现和描述, 到对过程和机制的深入探讨, 再到付诸于实践的行动和规划指导等各个层次。分子生态学的兴起给宏观生物学带来了若干飞跃性的变化, 使宏观生物学由传统的以观察、测量和推理为主的描述性研究转变为以从生物和种群的遗传构成的变化和历史演化背景上检验、证明科学假设及揭示机制和规律为主的机制性/解释性研究, 因而使得对具有普遍意义的科学规律、生态和进化过程及机制的探索成为可能。分子生态学已经进入组学研究时代, 这使得阐明复杂生态过程、生物地理过程和适应性演化过程的机制性研究由原来难以企及的梦想变成完全可以实现的探求; 它也带来了全新的挑战, 其中最有深远影响的将是对分子生态学研究至关重要的进化生物学基础理论方面的突破, 例如遗传变异理论、种群分化理论、表观遗传因素的作用, 乃至进化生物学的基本知识构架等等。这些方面的进展必将使宏观生物学迎来一场空前的革命, 并对生态学的所有分支学科产生重大影响, 甚至催生诸如生态表观组学这样的新分支学科。对于中国科学家来说, 分子生态学组学时代的开启, 更是一个千载难逢的机遇, 为提出和建立生命科学的新方法、新假说、新思想和新理论提供了莫大的探索空间——此前我们对宏观生物学方法、理论和思想的发展贡献很小。然而, 限制组学时代重大突破的关键因素是理论、概念、理念、实验方法或分析方法方面的创新和突破, 这正是我国分子生态学研究最薄弱的环节。我国教育部门应尽快调整生命科学本科生培养的理念和方法, 以培养具备突出创新潜力的年轻一代后备人才; 同时, 科研项目资助部门和研究人员不仅应清醒地认识本学科领域的发展态势, 更要及时调整思路, 树立新的项目管理理念和治学 理念。

关键词: 生态表观组学, 生态基因组学, 进化生物学, 表观遗传修饰, 谱系生物地理学, 群体遗传学, 选择和适应, 物种形成

Molecular ecology is an integrated scientific discipline that applies evolutionary theory to resolve various macroscopic biology questions. After approximately a half-century of development, it has become a well-established and active research field. It has not only penetrated numerous study areas of macroscopic biology, but also successfully bridged multiple disciplines such as ecology, physiology, geoscience and evolutionary biology. The research scope of molecular ecology ranges from developing the basic theories and methodologies, to uncovering and describing fundamental modes and patterns, to exploring processes and mechanisms, to excising research outcomes in practical applications such as conservation or pest control. The rising of molecular ecology has transformed macroscopic biology research, making it possible to leap into an epoch where systematical investigations on specific or general mechanisms are possible from joint genetic, ecological and evolutionary perspectives. Molecular ecology has already entered into the omic era, making many research dreams readily realisable. The omic era also brings challenges, of which the ones with the most profound influence on molecular ecology would be breakthroughs in basic evolutionary theories, such as theories of genetic variation, population differentiation, the evolutionary roles of epigenetic modification and variation, etc. Predictably, this will trigger an unprecedented revolution in biology, thus affecting undoubtedly all branches of ecology and even forging some new subdisciplines such as ecological epigenomics. For Chinese scientists, the opening of the omic era of molecular ecology has provided a rare and great opportunity for developing and establishing new methodologies, hypotheses and theories in macroscopic biology. Thus far, we have made no significant contributions. Nevertheless, theoretical, conceptual, and methodological research are the weakest areas of molecular ecology studies in China. Both research funding organizations and scientists should be clearly aware of the trends of research development and the challenges facing us; new funding management policies should be amended, and the proper research attitude and posture re-established.

Key words: ecological epigenomics, ecological genomics, evolutionary biology, epigenetic modification, phylogeography, population genetics, selection and adaptation, speciation

[1] Allis CD, Jenuwein T, Reinberg D, Caparros ML (2007) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
[2] Beaumont MA, Nielsen R, Robert C, Hey J, Gaggiotti O, Knowles L, Estoup A, Panchal M, Corander J, Hickerson M, Sisson SA, Fagundes N, Chikhi L, Beerli P, Vitalis R, Cornuet JM, Huelsenbeck J, Foll M, Yang ZH, Rousset F, Balding D, Excoffier L (2010) In defence of model-based inference in phylogeography.Molecular Ecology, 19, 436-446.
[3] Brown EJ, Bachtrog D (2014) The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes.Genome Research, 24, 1125-1137.
[4] Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success.Molecular Ecology, 19, 1253-1263.
[5] Diepeveen ET, Salzburger V (2012) Two Decades of Molecular Ecology: where are we and where are we heading?Molecular Ecology, 21, 5656-5659.
[6] Ellegren H (2014) Genome sequencing and population genomics in non-model organisms.Trends in Ecology and Evolution, 29, 51-63.
[7] Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms.Cell, 157, 95-109.
[8] Hewitt G (2000) The genetic legacy of Quaternary ice age.Nature, 405, 907-913.
[9] Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary.Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 359, 183-195.
[10] Hewitt GM (2011) Quaternary phylogeography: the roots of hybrid zones.Genetica, 139, 1-22.
[11] Hudson RR (1990) Gene genealogies and the coalescent process.Oxford Surveys in Evolutionary Biology, 7, 1-44.
[12] Karl SA, Toonen RJ, Grant WS, Bowen BW (2012) Common misconceptions in molecular ecology: echoes of the modern synthesis.Molecular Ecology, 21, 4171-4189.
[13] Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences.Nature, 475, 493-496.
[14] Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them.Molecular Ecology, 24, 3223-3231.
[15] Nestmann S, Sretenovic Rajicic T, Dehmer KJ, Fischer M, Schumacher J, Roscher C (2011) Plant species diversity and composition of experimental grasslands affect genetic differentiation of Lolium perenne populations.Molecular Ecology, 20, 2188-2203.
[16] Nielsen R, Beaumont MA (2009) Statistical inferences in phylogeography.Molecular Ecology, 18, 1034-1047.
[17] Schenekar T, Weiss S (2011) High rate of calculation errors mismatch distribution analysis results in numerous false in- ferences of biological importance.Heredity, 107, 511-512.
[18] Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion?Nature Reviews Genetics, 5, 63-69.
[19] Schöb C, Kerle S, Karley AJ, Morcillo L, Pakeman RJ, Newton AC, Brooker RW (2015) Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.New Phytologist, 205, 720-730.
[20] Schmitt T (2009) Biogeographical and evolutionary importance of the European high mountain systems.Frontiers in Zoology, 6, 9.
[21] Schmitt T, Hewitt GM (2004) The genetic pattern of population threat and loss: a case study of butterflies.Molecular Ecology, 13, 21-31.
[22] Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London, Series B, Biological Sciences, 277, 661-671.
[23] Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe.Molecular Ecology, 7, 453-464.
[24] Wakeley J (2009) Coalescent Theory: An Introduction. Roberts & Company Publishers, Colorado.
[25] Whitlock R (2014) Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis.Journal of Ecology, 102, 857-872.
[26] Yang Z (2014) Molecular Evolution: A Statistical Approach. Oxford University Press, Oxford.
[27] Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects.Molecular Ecology, 12, 563-584.
[28] Zhang DX (张德兴) (2002) Chapter 1. Molecular Ecology. In: Modern Ecology (现代生态学) (ed. Ge F (戈峰)), pp. 7-31. Science Press, Beijing (in Chinese)
[29] Zhang DX (张德兴) (2008) Chapter 1. Molecular Ecology. In: Modern Ecology (现代生态学), 2nd edn. (ed. Ge F (戈峰)), pp. 8-35. Science Press, Beijing. (in Chinese)
[30] Zhang DX (2015) Are we really seeing the big picture? Some reflections on the current debates in evolutionary biology.Current Zoology, 61, 217-220.
[1] 陈威,杨颖增,陈锋,周文冠,舒凯. (2019) 表观遗传修饰介导的植物胁迫记忆. 植物学报, 54(6): 779-785.
[2] 范紫腾, 毋钰灵, 王新菊, 李太强, 高江云. (2019) 共生真菌对兰科植物种间杂交后代种子萌发的效应. 植物生态学报, 43(4): 374-382.
[3] 胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生. (2019) 叶绿体DNA标记在谱系地理学中的应用研究进展. 生物多样性, 27(2): 219-234.
[4] 汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿. (2019) 转录组测序揭示翼盖蕨(Didymochlaena trancatula)的全基因组复制历史. 生物多样性, 27(11): 1221-1227.
[5] 王玉国. (2017) 自然杂交与物种形成. 生物多样性, 25(6): 565-576.
[6] 李霖锋, 刘宝. (2017) 表观遗传变异在植物杂交与多倍化过程中的作用. 生物多样性, 25(6): 600-607.
[7] 邱英雄, 鹿启祥, 张永华, 曹亚男. (2017) 东亚第三纪孑遗植物的亲缘地理学: 现状与趋势. 生物多样性, 25(2): 136-146.
[8] 张德兴. (2016) 为什么在物种概念上难以达成共识?. 生物多样性, 24(9): 1009-1013.
[9] 张德兴. (2015) 对我国分子生态学研究近期发展战略的一些思考. 生物多样性, 23(5): 559-569.
[10] 吕昊敏, 周仁超, 施苏华. (2015) 生态物种形成及其研究进展. 生物多样性, 23(3): 398-407.
[11] 李忠虎, 刘占林, 王玛丽, 钱增强, 赵鹏, 祝娟, 杨一欣, 阎晓昊, 李银军, 赵桂仿. (2014) 基因流存在条件下的物种形成研究述评:生殖隔离机制进化. 生物多样性, 22(1): 88-96.
[12] 尚蕾, 央金卓嘎, 杨继, 李博. (2010) 基因组学: 理解植物入侵性的重要工具. 生物多样性, 18(6): 533-546.
[13] 张勃, 孙杉, 张志强, 李庆军. (2010) 杠杆状雄蕊及其进化生态学意义. 植物生态学报, 34(1): 89-99.
[14] 程凯, 孙坤, 温红艳, 张敏, 贾东瑞, 刘建全. (2009) 江孜沙棘和云南沙棘之间谱系分化和亲缘地理. 植物生态学报, 33(1): 1-11.
[15] 刘义飞;黄宏文. (2009) 植物居群的基因流动态及其相关适应进化的研究进展. 植物学报, 44(03): 351-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed