生物多样性 ›› 2016, Vol. 24 ›› Issue (1): 40-47.doi: 10.17520/biods.2015248

• • 上一篇    下一篇

哀牢山中山湿性常绿阔叶林木质藤本对边缘效应的响应

袁春明1, 2, 耿云芬1, 2, 柴勇1, 郝佳波1, 2, 吴涛1, 2, *()   

  1. 1 (云南省林业科学院, 昆明 650204)
    2 (国家林业局云南珍稀濒特森林植物保护和繁育重点实验室, 云南省森林植物培育与利用重点实验室,昆明 650204);
  • 收稿日期:2015-09-15 接受日期:2015-12-08 出版日期:2016-01-20
  • 通讯作者: 吴涛 E-mail:ynafw@126.com
  • 基金项目:
    基金项目: 国家自然科学基金(31160136)

Response of lianas to edge effects in mid-montane moist evergreen broad- leaved forests in the Ailao Mountains, SW China

Chunming Yuan1, 2, Yunfen Geng1, 2, Yong Chai1, Jiabo Hao1, 2, Tao Wu1, 2, *()   

  1. 1 Yunnan Academy of Forestry, Kunming 650204
    2 Key Laboratory for Conservation of Rare, Endangered and Endemic Forest Plants in Yunnan of State Forestry Administration, Yunnan Provincial Key Laboratory for Cultivation and Utilization of Forest Plants, Kunming 650204
  • Received:2015-09-15 Accepted:2015-12-08 Online:2016-01-20
  • Contact: Wu Tao E-mail:ynafw@126.com

全球范围内森林片断化现象日益严重。与其他木本植物(乔木和灌木)相比, 木质藤本更趋向于分布在片断化森林的边缘, 因而了解木质藤本对边缘效应的响应对于进一步了解其对森林动态的影响极其必要。本文对哀牢山中山湿性常绿阔叶林林缘到林内环境梯度上木质藤本的变化进行了调查。在形成年龄分别为13年、35年和53年的3种类型的林缘, 设置从林缘向林内连续延伸的长方形样地(20 m × 50 m)各10个(总面积3 ha), 每个样地再划分为5个20 m × 10 m的样方。在每个样方内对胸径≥ 0.2 cm且长度≥ 2.0 m的木质藤本进行了每木调查。在3 ha的林缘样地中共记录到木质藤本植物2,426株, 隶属于14科19属31种。木质藤本的物种丰富度和多度均随距林缘距离的增加而降低, 边缘效应深度在35年林缘的边缘为30 m, 13和53年林缘的边缘则为20 m; 它们的胸高断面积在53年林缘的边缘效应深度为20 m, 但在13和35年林缘的不同距离上差异不显著。木质藤本对边缘效应的响应在物种水平上存在显著差异, 主要呈现正向和中性的响应格局, 包括只分布于林缘的物种, 和从林缘到林内环境梯度上密度逐渐降低的物种; 也有对边缘效应不敏感的物种。典范对应分析(CCA)表明, 林冠开度、边缘形成年龄和土壤水分是决定木质藤本在片断化森林边缘分布的重要影响因子。

关键词: 木质藤本, 群落, 物种, 边缘效应, 亚热带森林

Forests are becoming increasingly fragmented worldwide. Compared to other woody plants (i.e., trees and shrubs), lianas are more concentrated near the edge than in the forest interior. Therefore, understanding how lianas respond to edge effects is important for predicting the impacts of lianas on forests dynamics. In this study, change of lianas on the edge-to-interior gradients was investigated in a subtropical mid-montane moist evergreen broad-leaved forest in the Ailao Mountains, SW China. Ten 20 m × 50 m transect sample plots were established in 13-, 35- and 53-year forest edges along the gradient situated perpendicular to the edges. Each plot was divided into five 20 m × 10 m quadrats, and those lianas with ≥ 2.0 m in length and ≥ 0.2 cm in diameter at breast height (DBH) were measured. We recorded a total of 2,426 individual lianas in the 3-ha sample plots, representing 31 species in 19 genera and 14 families. Our results are as follows: (1) Liana species richness and abundance decreased with increasing distance from the edge; the distance of edge effects for the 35-year forest edge was 30 m, and 20 m for 13- and 53-year forest edges. Liana breast height area in the 53-year forest edge was significantly higher within 20 m of the forest edge than in the forest interior, whereas there was no significant difference along the edge to interior gradient in the 13- and 35-year forest edges; (2) Liana species responded differently to edge effects, including species present exclusively at or near the edges (within 20 m of the edge), species density decreased with increasing distance from the edge, and species were insensitive to edge effects, which showed minor variation or random fluctuation throughout the gradient; and (3) Results from the canonical correspondence analysis (CCA) indicated that canopy openness, edge age and soil moisture were the most important factors that determined the distribution of lianas at the forest edges.

Key words: lianas, community, species, edge effects, subtropical forest

图1

哀牢山中山湿性常绿阔叶林从林缘到林内环境梯度上木质藤本的变化: (a)物种丰富度、(b)多度和(c)胸高断面积(平均值±标准差)"

表1

哀牢中山湿性常绿阔叶林丛林缘到林内环境梯度上木质藤本密度的变化(平均值±标准差)"

表2

特征值及环境变量与典范对应分析(CCA)前3个排序轴的相关系数"

项目 Items 排序轴1 Axis 1 排序轴2 Axis 2 排序轴3 Axis 3
特征值 Eigenvalues 0.350 0.176 0.131
变化的累积百分比 Cumulative percentage variance
物种数据 Species data 6.3 9.4 11.7
物种-环境关系 Species-environment relation 45.8 68.7 85.9
环境变量 Environmental variables
坡向 Aspect 0.2348 -0.0557 0.8233
海拔 Altitude 0.2724 -0.2123 -0.5633
林冠开度 Crown illumination 0.9655 0.1555 -0.0541
土壤水分 Soil moisture -0.3979 0.5921 -0.4261
边缘年龄 Edge age -0.0992 -0.6194 -0.0546

图2

基于30个样地木质藤本植物多度的典范对应分析排序图。CII, 林冠开度; SM, 土壤水分; SAI, 坡向; AGE, 边缘年龄; AL, 海拔高度。物种代码见表1。"

1 Carter GA, Teramura AH (1988) Vines photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany, 75, 1011-1018.
2 Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63, 219-237.
3 Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications, 5, 74-86.
4 DeWalt SJ, Schnitzer SA, Julie S, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 16, 1-19.
5 Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica, 31, 17-30.
6 Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Conservation, 81, 117-142.
7 Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed- mesophytic forest fragments. Plant Ecology, 147, 21-35.
8 Gerwing JJ (2004) Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. Forest Ecology and Management, 190, 57-72.
9 Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt S, Ewango CEN, Foster R, Kenfack D, Martinez-Ramos M, Parren M, Parthasarathy N, Perez-Salicrup D, Putz FE, Thomas DW (2006) A standard protocol for liana censuses. Biotropica, 38, 256-261.
10 Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernandez A (2006) Life history trade-offs in tropical trees and lianas. Ecology, 87, 1281-1288.
11 Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P (2005) Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782.
12 Hegarty EE, Caballe G (1991) Distribution and abundance of vines in forest communities. In: The Biology of Vines (eds Putz EF, Mooney HA), pp. 263-282. Cambridge University Press, Cambridge.
13 Jin ZZ (1983) On the characteristic and nature of the evergreen broad-leaved forest in Xujiaba region, Ailao Mts. In: Research of Forest Ecosystems on Ailao Mountains (ed. Wu ZY), pp. 204-214. Yunnan Science and Technology Press, Kunming. (in Chinese with English abstract)
[金振洲 (1983) 论哀牢山徐家坝地区常绿阔叶林的特征和性质. 见: 云南哀牢山森林生态系统研究. 吴征镒主编, pp. 204-214. 云南科技出版社, 昆明.]
14 Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. Forest Ecology and Management, 242, 431-437.
15 Kurzel BP, Schnitzer SA, Carson WP (2006) Predicting liana crown location from stem diameter in three Panamanian lowland forests. Biotropica, 38, 262-266.
16 Kusumoto B, Enoki T, Watanabe Y (2008) Community structure and topographic distribution of lianas in a watershed on Okinawa, south-western Japan. Journal of Tropical Ecology, 24, 675-683.
17 Laurance WF (1999) Reflections on the tropical deforestation crisis. Biological Conservation, 91, 109-117.
18 Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Layrance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605-618.
19 Laurance WF, Perez-Salicrup DR, Delamonica P, Fearnside PM, Angelo SD, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82, 105-116.
20 Li XS, Liu WY, Chen JW, Tang CQ, Yuan CM (2010) Regeneration pattern of primary forest species across forest-field gradients in the subtropical mountains of southwestern China. Journal of Plant Research, 123, 751-762.
21 Liu WJ, Tang JW, Bai KJ (2001) Microclimate edge effects within and between Shorea chinensis forest fragments in Xishuangbanna. Acta Phytoecologica Sinica, 25, 616-622. (in Chinese with English abstract)
[刘文杰, 唐建维, 白坤甲 (2001) 西双版纳片断化望天树林小气候边缘效应比较研究. 植物生态学报, 25, 616-622.]
22 Londre RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 87, 2973-2978.
23 Matlack GR (1993) Microenvironmental variation within and among forest edge sites in the eastern United States. Biological Conservation, 66, 185-194.
24 Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution, 10, 58-62.
25 Palik BJ, Murphy PG (1990) Disturbance versus edge effects in sugar-maple/beech forest fragments. Forest Ecology and Management, 32, 187-202.
26 Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 1713-1724.
27 Qiu XZ, Xie SC (1998) Studies on the Forest Ecosystem in Ailao Mountains. Yunnan Science and Technology Press, Kunming. (in Chinese)
[邱学忠, 谢寿昌 (1998) 哀牢山森林生态系统研究. 云南科技出版社, 昆明.]
28 Richards PW (1996) The Tropical Rain Forest. Cambridge University Press, Cambridge
29 Sanches MC, Válio IFM (2002) Seed and seedling survival of some climber species in a southeast Brazilian tropical forest. Biotropica, 34, 323-327.
30 Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5, 18-32.
31 Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 17, 223-230.
32 Schnitzer SA, Carson WP (2001) Treefall gaps and the maintainance of species diversity in a tropical forest. Ecology, 82, 913-919.
33 Wu YN, Tao JP, Zhao K, Hao JH (2010) Edge effects of a natural secondary forest on liana communities in Bawangling, Hainan Island. Scientia Silvae Sinicae, 46(5), 1-6. (in Chinese with English abstract)
[乌玉娜, 陶建平, 赵科, 郝建辉 (2010) 海南霸王岭天然次生林边缘效应下木质藤本的变化. 林业科学, 46(5), 1-6.]
34 Yuan CM, Liu WY, Tang CQ, Li XS (2009) Species composition, diversity and abundance of lianas in different secondary and primary forests in a subtropical mountainous area, SW China. Ecological Research, 24, 1361-1370.
35 Yuan CM, Liu WY, Yang GP (2015) Diversity and spatial dis- tribution of lianas in a mid-montane moist evergreen broad-leaved forest in the Ailao Mountains, SW China. Biodiversity Science, 23, 332-340. (in Chinese with English abstract)
[袁春明, 刘文耀, 杨国平 (2015) 哀牢山中山湿性常绿阔叶林木质藤本植物的多样性与空间分布. 生物多样性, 23, 332-340.]
36 Zhang JT (2004) Quantitative Ecology. Science Press, Beijing.
(in Chinese) [张金屯 (2004) 数量生态学. 科学出版社, 北京.]
37 Zhu H, Xu ZF, Wang H, Li BG (2004) Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodiversity and Conservation, 13, 1355-1372.
[1] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657.
[2] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6): 607-618.
[3] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[4] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[5] 蒋志刚. 中国重点保护物种名录、标准与管理[J]. 生物多样性, 2019, 27(6): 698-703.
[6] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[7] 李萌, 尉婷婷, 史博洋, 郝希阳, 徐海根, 孙红英. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用[J]. 生物多样性, 2019, 27(5): 480-490.
[8] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[9] 江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. 金钟藤入侵群落的种间联结及生态位特征[J]. 生物多样性, 2019, 27(4): 388-399.
[10] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征[J]. 生物多样性, 2019, 27(4): 439-448.
[11] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. 海南岛翼手目物种多样性现状与分布预测[J]. 生物多样性, 2019, 27(4): 400-408.
[12] 肖治术,陈立军,宋相金,束祖飞,肖荣高,黄小群. 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估[J]. 生物多样性, 2019, 27(3): 237-242.
[13] 陈立军,肖文宏,肖治术. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 2019, 27(3): 243-248.
[14] 陈立军,束祖飞,肖治术. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例[J]. 生物多样性, 2019, 27(3): 266-272.
[15] 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed