生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 630-640.doi: 10.17520/biods.2015031

所属专题: 森林动态监测样地专题

• • 上一篇    下一篇

河南宝天曼落叶阔叶林木本植物单物种-面积关系

闫满玉1, 2, 杜晓军2, *(), 赵爱花2, 彭明春1   

  1. 1 云南大学生态学与地植物学研究所, 昆明 650091
    2 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
  • 收稿日期:2015-02-04 接受日期:2015-05-28 出版日期:2015-09-20
  • 通讯作者: 杜晓军 E-mail:xjdu@ibcas.ac.cn
  • 基金项目:
    国家自然科学基金(31070554)、中国科学院中国森林生物多样性监测网络建设项目-宝天曼森林大样地常规监测和中国科学院战略性先导科技专项(XDA05050203)

Individual woody species-area relationship in a deciduous broad-leaved forest in Baotianman, Henan Province

Manyu Yan1, 2, Xiaojun Du2, *(), Aihua Zhao2, Mingchun Peng1   

  1. 1 Institute of Ecology and Geobotany, Yunnan University, Kunming 650091
    2 State Key Laboratory of Vegetation and Environment Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2015-02-04 Accepted:2015-05-28 Online:2015-09-20
  • Contact: Du Xiaojun E-mail:xjdu@ibcas.ac.cn

单物种-面积关系(ISAR)方法可判定单个物种在不同空间尺度下对邻域生物多样性的影响作用是促进、抑制或中性。尽管已有研究尝试分析了不同径级大小个体对邻域植物多样性的影响, 但这方面仍缺乏较系统的研究, 对不同径级植株在维持森林群落植物多样性方面的作用差异仍不清楚。本研究以河南宝天曼国家级自然保护区1 ha落叶阔叶林固定样地为例, 通过对全部树(包括大树和小树)分别对全部树/大树/小树, 大树分别对全部树/大树/小树, 小树分别对全部树/大树/小树9种类型的ISAR进行比较分析, 拟验证如下假设: (1)大树相比小树来说对邻域植物多样性的影响更大, (2)同一物种或同一径级个体对邻域小树比对邻域大树的影响要强, (3)宝天曼落叶阔叶林木本植物中中性物种占主体。结果显示不同大小的树木个体对邻域植物多样性的影响作用也因空间尺度、邻域植物个体大小而有所差别: 支持同一物种或同一径级个体对邻域小树比对邻域大树的影响要强的假设, 没有检测到大树比小树对邻域植物多样性更大的影响作用; 中性物种在所研究森林群落中1-10 m尺度上均占绝对优势, 促进种的数量在全部树对全部树, 全部树对小树, 小树对全部树以及小树对小树情况下随着尺度的增加呈先升高后下降的趋势, 抑制种在少数小尺度下被少量检测到。本研究结果有助于我们更好地认识和理解森林群落中物种作用及群落维持机制, 但该结果还需在更大尺度样地以及其他类型的森林中进行检验。

关键词: 单物种-面积关系, 中性种, 生物多样性, 径级, 森林动态监测样地, 宝天曼国家级自然保护区

The individual species-area relationship (ISAR) can be used to estimate the effects of individual species (accumulator, repeller, or neutral) on neighboring biodiversity at different spatial scales. The effects of individual species with different sizes (diameter at breast height classes, DBH classes) on neighboring species diversity are still an unresolved question although several papers have addressed this question by using the ISAR. In this study, we compared ISARs of nine types (all to all, all to adult, all to young, adult to all, adult to adult, adult to young, young to all, young to adult and young to young); “young to adult” represents that ISAR of young individuals of target species to adult individuals of neighboring species in a 1 ha deciduous broad-leaved forest in Baotianman National Nature Reserve, Henan Province. We tested the following hypotheses: (1) the adult individuals (DBH ≥ 10 cm) of target species have greater influence on the biodiversity of their neighbors than the young (DBH < 10 cm); (2) the individuals of the same species or the same size class have greater influence on neighboring young tree diversity than adult tree diversity; (3) most species are neutral in the Baotianman deciduous broad-leaved forest. The results showed that the effects of tree species with different sizes on neighboring tree diversity are scale-based and also affected by the size of the neighbor tree. The results supported the hypothesis that individuals of the same species or the same size have greater influence on neighboring young tree diversity than on neighboring adult tree diversity; but did not support that the adult individuals of focal species have greater influence on neighboring tree diversity than young individuals. The results also indicated that most species are neutral at spatial scales of 1-10 m in the Baotianman forest; multiple accumulator or repeller species were detected at some scales. The results will contribute to our understanding of the role of specific species on biodiversity and community maintenance mechanism.

Key words: individual species-area relationship, neutral species, biodiversity, DBH classes, forest dynamics plot, Baotianman National Nature Reserve

图1

宝天曼1 ha森林动态监测样地内木本植物径级结构(上)及个体空间分布(下) (所有个体、个体数≥ 10的大树、个体数≥ 30的小树)"

图2

九种类型((a)全部树对全部树、(b)全部树对大树、(c)全部树对小树、(d)大树对全部树、(e)大树对大树、(f)大树对小树、(g)小树对全部树、(h)小树对大树和(i)小树对小树)的单物种面积关系曲线(ISAR)。黑线代表例子物种杈叶枫。"

图3

九种类型((a)全部树对全部树、(b)全部树对大树、(c)全部树对小树、(d)大树对全部树、(e)大树对大树、(f)大树对小树、(g)小树对全部树、(h)小树对大树和(i)小树对小树)的单物种面积关系在不同尺度下多样性促进种、中性种或抑制种的数量"

图4

不同尺度下9种类型(全部树对全部树、全部树对大树、全部树对小树、大树对全部树、大树对大树、大树对小树、小树对全部树、小树对大树和小树对小树)的单物种面积关系(ISAR)比例值(A) (平均值±标准误)及其范围(最大值和最小值之差) (B)"

表1

不同空间尺度下9种类型的单物种面积关系(ISAR)比例值的均值比较(Scheffe方法)。相同字母表示差异不显著, 不同字母表示差异显著(P < 0.05)。"

类型 Type 尺度 Scales (m)
1 2 3 4 5 6 7 8 9 10
全部树对全部树 All to all 0.020ab 0.047a 0.071ab 0.093a 0.120b 0.137b 0.157b 0.175b 0.191b 0.206b
全部树对大树 All to adult 0.003e 0.010e 0.021e 0.033c 0.045d 0.057e 0.069e 0.082d 0.095d 0.108d
全部树对小树 All to young 0.006de 0.022d 0.043cd 0.065b 0.086c 0.106c 0.126c 0.144c 0.162c 0.180c
大树对全部树 Adult to all 0.006de 0.024cd 0.055bc 0.089a 0.124ab 0.159ab 0.195a 0.228a 0.264a 0.296a
大树对大树 Adult to adult 0.006de 0.018de 0.030de 0.044bc 0.063cd 0.080de 0.100d 0.123c 0.143c 0.160c
大树对小树 Adult to young 0.015bc 0.045ab 0.072ab 0.097a 0.136ab 0.162a 0.199a 0.231a 0.264a 0.298a
小树对全部树 Young to all 0.022a 0.033bc 0.064ab 0.098a 0.133ab 0.166a 0.199a 0.231a 0.263a 0.295a
小树对大树 Young to adult 0.009cd 0.023cd 0.038d 0.051b 0.072c 0.087d 0.106d 0.127c 0.164c 0.167c
小树对小树 Young to young 0.022a 0.050a 0.078a 0.106a 0.141a 0.168a 0.200a 0.235a 0.264a 0.295a
[1] Chesson P (2000) General theory of competitive coexistence in spatially varying environments.Theortical Population Biology, 58, 211-237.
[2] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardlised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380.
[3] Condit R, Ashton P, Bunyavejchewin S, Dattaraja HS, Davies S (2006) The importance of demographic niches to tree diversity.Science, 313, 98-101.
[4] Condit R (1998) Tropical Forest Census Plots: Methords and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, New York.
[5] Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boser PJD, Gradwell GR), pp. 298-312. Center for Agricultural Publishing and Documentation, Wageningen.
[6] Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. Hodder Arnold, London.
[7] Fan CY (范春雨), Yuan ZL (元正龙), Zhao XH (赵秀海) (2014) Scale dependence of species diversity pattern in a near-mature forest in Jiaohe of Jinlin Province.Journal of Beijing Forestry University(北京林业大学学报) 36(6), 73-79. (in Chinese with English abstract)
[8] Gleason HA (1922) On the relation between species and area.Ecology, 3, 158-162.
[9] Gong GQ (宫贵权), Huang ZL (黄忠良), Huang JX (黄建雄), Ye WH (叶万辉), Cao HL (曹洪麟), Lian JY (练琚愉), Lin GJ (林国俊) (2011) How individual species structure the community in Dinghushan 20 ha forest plot? Ecology and Environmental Science(生态环境学报), 22, 574-582. (in Chinese with English abstract)
[10] Hara T (1988) Dynamics of size structure in plant populations.Trends in Ecology and Evolution, 3, 129-133.
[11] He FL, Legendre P (2002) Species diveristy patterns derived from species-area models.Ecology, 83, 1185-1198.
[12] Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
[13] Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term of individual trees in a neotropical forest.Ecological Research, 16, 859-875.
[14] Hubbell SP, He F, Condit R, Borda-de-Agua L, Kellner J, ter Steege H (2008) How many tree species are there in the Amazon and how many of them will go extinct?Proceedings of the National Academy of Sciences, USA, 105, 11498-11504.
[15] Janzen DH (1970) Herbivores and the number of tree species in tropical forests.The American Naturalist, 104, 501-528.
[16] Lieberman M, Lieberman D (2007) Nearest-neighbor tree species combinations in tropical forest: the role of chance, and some consequences of high diversity.Oikos, 116, 377-386.
[17] Lin WX (林武星), Hong W (洪伟), Zheng YS (郑郁善), Ye GF (叶功富) (2005) Research advance in allelopathy of forest plants.Chinese Journal of Eco-Agriculture(中国生态农业学报), 13(2), 43-46. (in Chinese with English abstract)
[18] Loosmore NB, Ford ED (2006) Statistical inference using the G or K point pattern spatial statistics.Ecology, 87, 1925-1931.
[19] Luu TC, Binkley D, Stape JL (2013) Neighborhood uniformity increases growth of individual Eucalyptus trees.Forest Ecology and Management, 289, 90-97.
[20] Matthew AL (1995) The niche concept revisited: mechanistic model and community context.Ecology, 76, 1371-1382.
[21] McPherson JK, Thompson GL (1972) Competitive and allelopathic suppression of understory by Oklahoma oak forests.Bulletin of the Torrey Botanical Club, 99, 293-300.
[22] Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of spatial point patterns in plant ecology.Plant Ecology, 187, 59-82.
[23] Plotkin JB, Potts MD, Yu DW, Bunyavejchewin S, Condit R, Foster R, Hubbell S, LaFrankie J, Manokaran N, Lee HS, Sukumar R, Nowak MA, Ashton PS (2000) Predicting species diversity in tropical forests.Proceedings of the National Academy of Sciences, USA, 97, 10850-10854.
[24] Rayburn AP, Wiegand T (2012) Individual species-area relationships, spatial patterns of species diversity in a Great Basin, semi-arid shrubland.Ecography, 35, 341-347.
[25] Ricklefs RE (1987) Community diversity relative roles of local and regional process.Science, 235, 167-171.
[26] Shi ZM (史作民), Liu SR (刘世荣), Wang ZY (王正用) (1996) The characteristics of flora of seed plants in Baotianman.Acta Botanica Boreali-Occidentalia Sinica(西北植物学报), 16, 329-335. (in Chinese with English abstract)
[27] Song CS (宋朝枢) (1994) Scientific Investigation in the Bao- tianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese)
[28] Steel RGD, Toeeir JH, Dickey DA (1996)Principles and Procedures of Statistics: A Biometrical Approach, 3rd edn. McGraw-Hill Companies, New York.
[29] Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a bornean rain forest.Ecology, 86, 3048-3062.
[30] Tang M (唐明), Chen H (陈辉), Zhang BY (张博勇) (1993) Study on the VA mycorrhizae of Acer truncatun Bunge.Journal of Northwest Forestry College(西北林学院学报), 8(3), 18-21. (in Chinese with English abstract)
[31] Volkov I, Banavar JR, He F, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests.Nature, 438, 658-661.
[32] Wang T (王婷), Ren SY (任思远), Yuan ZL (袁志良), Zhu Y (祝燕), Pan N (潘娜), Li LX (李鹿鑫), Ye YZ (叶永忠) (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China.Biodiversity Science(生物多样性), 22, 449-457. (in Chinese with English abstract)
[33] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogeneies and community ecology.Annual Review of Ecology and Systematics, 33, 475-505.
[34] Weiner J (1990) Asymmetric competition in plant populations.Trends in Ecology and Evolution, 5, 360-364.
[35] Wei YB (魏彦波), Cheng YX (程艳霞), Li JG (李金功), Wang GC (王贵春) (2014) Plant diversity accumulators govern local spatial diversity.Journal of Beijing Forestry University(北京林业大学学报), 36(6), 66-72. (in Chinese with English abstract)
[36] Wiegand T, Gunatilleke CVS, Gunatilleke IAUN, Huth A (2007) How individual species structure diversity in tropical forests. Proceedings of the National Academy of Sciences, USA, 104, 19029-19033.
[37] Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229.
[38] Yang J, Swenson NG, Cao M, Chuyong GB, Ewango CEN, Howe R, Kenfack D, Thomas D, Wolf A, Lin LX (2013) A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.PLoS ONE, 8, e63192.
[39] Zhang CY, Jin WB, Gao LS, Zhao XH (2014) Scale dependent structuring of spatial diversity in two temperate forest communities. Forest Ecology and Management, 316, 110-116.
[1] 黄林韬 黄晖 江雷. (2020) 中国造礁石珊瑚分类厘定. 生物多样性, 28(4): 515-523.
[2] 刘海鸥,张风春,赵富伟,杜乐山,薛达元. (2020) 从《生物多样性公约》资金机制战略目标变迁解析生物多样性热点问题. 生物多样性, 28(2): 244-252.
[3] 耿宜佳,田瑜,李俊生,徐靖. (2020) “2020年后全球生物多样性框架”进展及展望. 生物多样性, 28(2): 238-243.
[4] 王剀,任金龙,陈宏满,吕植桐,郭宪光,蒋珂,陈进民,李家堂,郭鹏,王英永,车静. (2020) 中国两栖、爬行动物更新名录. 生物多样性, 28(2): 189-218.
[5] 马亦生,马青青,何念军,朱大鹏,赵凯辉,刘红彩,李帅,孙亮,唐流斌. (2020) 基于红外相机技术调查佛坪国家级自然保护区兽类和鸟类多样性. 生物多样性, 28(2): 226-230.
[6] 李熠,唐志尧,闫昱晶,王科,蔡磊,贺金生,古松,姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例. 生物多样性, 28(1): 99-106.
[7] 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. (2020) 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 44(1): 22-32.
[8] 吴盼,彭希强,杨树仁,高亚男,白丰桦,衣世杰,杜宁,郭卫华. (2019) 山东省滨海湿地柽柳种群的空间分布格局及其关联性. 植物生态学报, 43(9): 817-824.
[9] 杨锐,彭钦一,曹越,钟乐,侯姝彧,赵智聪,黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[10] 李顺,邹亮,宫一男,杨海涛,王天明,冯利民,葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[11] 李永民,吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[12] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[13] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[14] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
[15] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed