生物多样性 ›› 2015, Vol. 23 ›› Issue (2): 167-173.doi: 10.17520/biods.2014139

• • 上一篇    下一篇

八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局

卢志军1, 刘福玲2, 吴浩1, 3, 江明喜1, *()   

  1. 1 中国科学院武汉植物园水生植物与流域生态院重点实验室, 武汉 430074
    2 湖北省咸宁市林业局, 湖北咸宁 437100
    3 中国科学院大学, 北京 100049
  • 收稿日期:2014-07-02 接受日期:2015-01-15 出版日期:2015-03-20
  • 通讯作者: 江明喜 E-mail:mxjiang@wbgcas.cn
  • 基金项目:
    国家自然科学基金(31070465; 30900178);中国森林生物多样性监测网络项目

Species composition, size class, and spatial patterns of snags in the Badagongshan (BDGS) mixed evergreen and deciduous broad-leaved forest in central China

Zhijun Lu1, Fuling Liu2, Hao Wu1, 3, Mingxi Jiang1, *()   

  1. 1 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074
    2 Xianning Forestry Bureau, Xianning, Hubei 437100
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2014-07-02 Accepted:2015-01-15 Online:2015-03-20
  • Contact: Jiang Mingxi E-mail:mxjiang@wbgcas.cn

枯立木是森林生态系统的重要组成部分, 对其数量特征(如物种组成和大小级)与分布格局的研究是认识这个特殊类群的起点。本文以湖南八大公山25 ha森林动态监测样地常绿落叶阔叶混交林为研究对象, 以该样地第一次木本植物(DBH ≥ 1 cm)调查数据为基础, 分析了枯立木的物种组成、径级结构、分布格局以及生境关联。结果表明, 样地内共有枯立木(DBH ≥ 1 cm, 高度≥ 130 cm, 完全死亡)8,947株。其中, 1 cm≤ DBH <5 cm枯立木4,258株(47.59%), 5 cm ≤ DBH <10 cm枯立木2,132株(23.84%), 10 cm ≤ DBH <30 cm枯立木2,377株(26.57%), DBH ≥ 30 cm枯立木180株(2%); 平均DBH为8.0 cm, 最大DBH为83.5 cm。从分布格局来看, 0-50 m的尺度上, 样地内枯立木主要呈现聚集分布, 但在接近40 m的尺度上, 逐渐变为随机分布。利用多元回归树(multivariate regression tree, MRT)将样地生境分为3类, 运用Torus转换比较某类生境中枯立木密度与物种零分布模型中的期望密度, 结果显示枯立木在山谷中分布较少, 山脊较多, 而在山坡生境则呈现随机分布。鉴定到种的枯立木有724株(8.1%), 隶属于26科84种; 其中, 杜鹃花科、壳斗科和樟科枯立木最多。在物种水平上, 多脉青冈(Cyclobalanopsis multinervis)、长蕊杜鹃(Rhododendron stamineum)和黄丹木姜子(Litsea elongata)枯立木最多; 而优势树种亮叶水青冈(Fagus lucida)的枯立木并不多见。

关键词: 点格局分析, 径级结构, 生境关联, 树木死亡, 物种组成

Snag (standing dead tree) is an important component of forest ecosystems. Snag characteristics such as species composition, size class, and spatial patterns correlate with community maintenance mechanisms. Here we examine species composition, size class structure, spatial patterns and habitat associations of snags from a woody plant census of the 25 ha evergreen and deciduous broad-leaved mixed forest dynamics plot of Badagongshan (BDGS). There were 8,947 snags (DBH ≥ 1 cm, height ≥ 130 cm, totally dead) in the plot; 4,258 (47.59%) snags with DBH 1-5 cm, 2,132 (23.84%) snags with DBH 5-10 cm, 2,377 (26.57%) snags with DBH 10-30 cm, and 180 (2%) snags with DBH ≥ 30 cm. The average snag DBH was 8.0 cm and the maximum was 83.5 cm. At the scale of 0-50 m, snags were mostly aggregated in the plot, but changed to random distributed near the scale of 40 m. Habitat was divided into three categories with a MRT (multivariate regression tree) analysis. Density of snags was compared to habitat type with expected densities derived from species null distributions with a Torus transformation. Our findings indicate that snags in the BDGS plot were negatively related to valleys, but positively related to ridges, and randomly distributed on slopes. Among all the snags, only 724 (8.1%) snags were identified to species level including 84 species (26 families). At the species level, snags of Cyclobalanopsis multinervis, Rhododendron stamineum and Litsea elongata dominated while snags of Fagus lucida was less common.

Key words: point pattern analysis, diameter class, habitat association, tree mortality, species composition

图1

八大公山25 ha样地内枯立木常见科(个体数≥ 25)和常见物种(个体数≥ 25)"

图2

八大公山25 ha样地内枯立木径级分布"

图3

八大公山25 ha样地枯立木空间分布点格局分析。A: 样地内所有胸径≥1 cm的枯立木的散点图; B到F: 样地内枯立木单变量g(r)点格局分析。B: DBH ≥ 1 cm; C: 1 cm ≤ DBH < 5 cm; D: 5 cm ≤ DBH < 10 cm; E: 10 cm ≤ DBH < 30 cm; F: DBH ≥ 30 cm."

图4

八大公山25 ha样地生境分类(多元回归树方法, MRT)。浅灰: 山谷; 灰色: 山坡; 黑色: 山脊。"

表1

八大公山25 ha样地枯立木科水平(个体数≥ 25)生境关联分析"

科 Family 生境类型 Habitat type P 关联类型 Association type
杜鹃花科
Ericaceae
山谷 Valley 0.002 显著负关联 Significant negative correlation
山坡 Slope 0.34 随机分布 Stochastic distribution
山脊 Ridge 0.88 随机分布 Stochastic distribution
壳斗科
Fagaceae
山谷 Valley 0.04 随机分布 Stochastic distribution
山坡 Slope 0.44 随机分布 Stochastic distribution
山脊 Ridge 0.78 随机分布 Stochastic distribution
樟科
Lauraceae
山谷 Valley 0.31 随机分布 Stochastic distribution
山坡 Slope 0.28 随机分布 Stochastic distribution
山脊 Ridge 0.73 随机分布 Stochastic distribution
山矾科
Symplocaceae
山谷 Valley 0.76 随机分布 Stochastic distribution
山坡 Slope 0.60 随机分布 Stochastic distribution
山脊 Ridge 0.25 随机分布 Stochastic distribution
山茶科
Theaceae
山谷 Valley 0.46 随机分布 Stochastic distribution
山坡 Slope 0.52 随机分布 Stochastic distribution
山脊 Ridge 0.45 随机分布 Stochastic distribution

表2

八大公山25 ha样地枯立木物种水平(个体数≥25)生境关联分析"

物种 Species 生境类型 Habitat type P 关联类型 Association type
多脉青冈
Cyclobalanopsis multinervis
山谷 Valley 0.10 随机分布 Stochastic distribution
山坡 Slope 0.52 随机分布 Stochastic distribution
山脊 Ridge 0.67 随机分布 Stochastic distribution
长蕊杜鹃
Rhododendron stamineum
山谷 Valley 0.004 显著负关联 Significant negative correlation
山坡 Slope 0.37 随机分布 Stochastic distribution
山脊 Ridge 0.88 随机分布 Stochastic distribution
黄丹木姜子
Litsea elongata
山谷 Valley 0.76 随机分布 Stochastic distribution
山坡 Slope 0.12 随机分布 Stochastic distribution
山脊 Ridge 0.70 随机分布 Stochastic distribution
小果南烛
Lyonia ovalifolia
山谷 Valley 0.02 显著负关联 Significant negative correlation
山坡 Slope 0.61 随机分布 Stochastic distribution
山脊 Ridge 0.68 随机分布 Stochastic distribution
大叶山矾
Symplocos macrophylla
山谷 Valley 0.75 随机分布 Stochastic distribution
山坡 Slope 0.56 随机分布 Stochastic distribution
山脊 Ridge 0.27 随机分布 Stochastic distribution
短柱柃
Eurya brevistyla
山谷 Valley 0.51 随机分布 Stochastic distribution
山坡 Slope 0.55 随机分布 Stochastic distribution
山脊 Ridge 0.25 随机分布 Stochastic distribution
小花木荷
Schima parviflora
山谷 Valley 0.19 随机分布 Stochastic distribution
山坡 Slope 0.49 随机分布 Stochastic distribution
山脊 Ridge 0.62 随机分布 Stochastic distribution
满山红
Rhododendron mariesii
山谷 Valley 0.08 随机分布 Stochastic distribution
山坡 Slope 0.37 随机分布 Stochastic distribution
山脊 Ridge 0.79 随机分布 Stochastic distribution
1 An Y (安云), Ding GD (丁国栋), Gao GL (高广磊), Liang WJ (梁文俊), He Y (贺宇), Wei B (魏宝), Bao B (鲍彪) (2012) Quantity characteristics and distribution pattern of standing dead trees in natural secondary forests of rocky mountain area in northern China.Bulletin of Soil and Water Conservation(水土保持通报), 32, 246-250. (in Chinese with English abstract)
2 Baddeley A (2008) Analysing Spatial Point Patterns in 'R'. p. 94. CSIRO, Canberra.
3 Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (2006) Case studies in spatial point process modelling. In: Lecture Notes in Statistics (eds Bickel P, Diggle P, Fienberg S, Gather U, Olkin I, Zeger S), p. 40. Springer, New York.
4 Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Davies SJ, Hubbell SP, Chuyong GB, Kenfack D, Thomas DW, Dalling JW (2013) Habitat filtering across tree life stages in tropical forest communities.Proceedings of the Royal Society B: Biological Sciences, 280, 20130548.
5 Bin Y, Lian J, Wang Z, Ye W, Cao H (2011) Tree mortality and recruitment in a subtropical broadleaved monsoon forest in South China.Journal of Tropical Forest Science, 23, 57-66.
6 Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A (2008) Importance of soils, topography and geographic distance in structuring central Amazonian tree communities.Journal of Vegetation Science, 19, 863-874.
7 Bond-Lamberty B, Rocha AV, Calvin K, Holmes B, Wang C, Goulden ML (2014) Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.Global Change Biology, 20, 216-227.
8 Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought.Ecological Monographs, 65, 419-439.
9 De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships.Ecology, 83, 1105-1117.
10 Escandón AB, Paula S, Rojas R, Corcuera LJ, Coopman RE (2013) Sprouting extends the regeneration niche in temperate rain forests: the case of the long-lived tree Eucryphia cordifolia.Forest Ecology and Management, 310, 321-326.
11 Flanagan PT, Morgan P, Everett RL (1998) Snag recruitment in subalpine forests.Northwest Science, 72, 303-309.
12 Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process.BioScience, 37, 550-556.
13 Fraver S, Jonsson BG, Jönsson M, Esseen PA (2008) Demographics and disturbance history of a boreal old-growth Picea abies forest.Journal of Vegetation Science, 19, 789-798.
14 Ganey JL (1999) Snag density and composition of snag populations on two National Forests in northern Arizona.Forest Ecology and Management, 117, 169-178.
15 Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot.Journal of Ecology, 89, 947-959.
16 Harper KA, Bergeron Y, Drapeau P, Gauthier S, de Grandpré L (2006) Changes in spatial pattern of trees and snags during structural development in Picea mariana boreal forests.Journal of Vegetation Science, 17, 625-636.
17 Hilger AB, Shaw CH, Metsaranta JM, Kurz WA (2012) Estimation of snag carbon transfer rates by ecozone and lead species for forests in Canada.Ecological Applications, 22, 2078-2090.
18 Iida Y, Poorter L, Sterck F, Kassim AR, Potts MD, Kubo T, Kohyama TS (2014) Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species.Ecology, 95, 353-363.
19 Iida Y, Kohyama TS, Kubo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011) Tree architecture and life-history strategies across 200 co-occurring tropical tree species.Functional Ecology, 25, 1260-1268.
20 Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and Modelling of Spatial Point Patterns. Wiley, London.
21 Keitt TH, Ottar N, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions.Ecography, 25, 616-625.
22 Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China.Journal of Vegetation Science, 20, 415-423.
23 Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis.Vegetatio, 80, 107-138.
24 Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun I-F, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China.Ecology, 90, 663-674.
25 Lin SW (林淑伟), Chai WY (柴文毅), Chen BR (陈炳容), Fan HL (范海兰), Song P (宋萍), Cai BL (蔡冰玲), Liu LX (刘丽香) (2008) On spatial characters of the dead wood in Wuyi Mountain forest ecosystem.Journal of Beihua University (Natural Science)(北华大学学报(自然科学版)), 9, 356-361. (in Chinese with English abstract)
26 Liu JJ, Tan YH, Slik JWF (2014) Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest.Forest Ecology and Management, 330, 75-81.
27 Lu ZJ (卢志军), Bao DC (鲍大川), Guo YL (郭屹立), Lu JM (路俊盟), Wang QG (王庆刚), He D (何东), Zhang KH (张奎汉), Xu YZ (徐耀粘), Liu HB (刘海波), Meng HJ (孟红杰), Huang HD (黄汉东), Wei XZ (魏新增), Liao JX (廖建雄), Qiao XJ (乔秀娟), Jiang MX (江明喜), Gu ZR (谷志容), Liao CL (廖春林) (2013) Community composition and structure of Badagongshan (BDGS) Forest Dynamic Plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, central China.Plant Science Journal(植物科学学报), 31, 336-344. (in Chinese with English abstract)
28 Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks.Nature, 455, 213-215.
29 McComb W, Lindenmayer D(1999) Dying, dead and down trees. In: Maintaining Biodiversity in Forests Ecosystems (ed. Hunter ML Jr), pp. 335-372. Cambridge University Press, Cambridge.
30 Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sánchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach.Journal of Ecology, 91, 757-775.
31 R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.(2014-12-1)
32 Wang XG, Comita LS, Hao ZQ, Davies SJ, Ye J, Lin F, Yuan ZQ (2012) Local-scale drivers of tree survival in a temperate forest.PLoS ONE, 7, e29469.
33 Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest.Journal of Ecology, 88, 464-478.
34 Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology.Oikos, 104, 209-229.
35 Woodall WC, Liknes GC (2008) Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States.Carbon Balance and Management, 3, 5.
36 Yamada T, Tomita A, Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Tan S, Ashton P (2006) Habitat associations of Sterculiaceae trees in a Bornean rain forest plot.Journal of Vegetation Science, 17, 559-566.
37 Zhang J, Hao ZQ, Sun IF, Song B, Ye J, Li BH, Wang XG (2009) Density dependence on tree survival in an old-growth temperate forest in northeastern China.Annals of Forest Science, 66, 1-9.
38 Zhu Y, Mi XC, Ren HB, Ma KP (2010) Density dependence is prevalent in a heterogeneous subtropical forest.Oikos, 119, 109-119.
[1] 李帅锋 郎学东 黄小波 王艳红 刘万德 徐崇华 苏建荣. (2020) 云南普洱30hm2季风常绿阔叶林动态监测样地群丛数量分类. 植物生态学报, 44(预发表): 0-0.
[2] 刘丹,郭忠玲,崔晓阳,范春楠. (2020) 5种东北红豆杉植物群丛及其物种多样性的比较. 生物多样性, 28(3): 340-349.
[3] 王鑫厅,柴静,姜超,邰阳,迟延艳,张维华,刘芳,李素英. (2020) 典型草原大针茅种群空间格局及对长期过度放牧的响应. 生物多样性, 28(2): 128-134.
[4] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[5] 吴盼,彭希强,杨树仁,高亚男,白丰桦,衣世杰,杜宁,郭卫华. (2019) 山东省滨海湿地柽柳种群的空间分布格局及其关联性. 植物生态学报, 43(9): 817-824.
[6] 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. (2019) 华北区域环境梯度上阔叶林构建模式及分布成因. 植物生态学报, 43(9): 732-741.
[7] 许光耀, 李洪远, 莫训强, 孟伟庆. (2019) 中国归化植物组成特征及其时空分布格局分析. 植物生态学报, 43(7): 601-610.
[8] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. (2019) 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征. 生物多样性, 27(4): 439-448.
[9] 张田田, 王璇, 任海保, 余建平, 金毅, 钱海源, 宋小友, 马克平, 于明坚. (2019) 浙江古田山次生与老龄常绿阔叶林群落特征的比较. 生物多样性, 27(10): 1069-1080.
[10] 李通,李俊凝,魏玉莲. (2019) 古田山国家级自然保护区木腐真菌物种多样性及分布. 生物多样性, 27(1): 81-87.
[11] 窦丽娜, 张文富, 邓晓保, 曹敏, 唐勇. (2018) 西双版纳望天树林种子雨9年动态. 生物多样性, 26(9): 919-930.
[12] 喻丁香, 杜凡, 石明, 杨聪, 代俊. (2018) 云南墨江极小种群物种铁竹的种群结构与群落特征. 植物生态学报, 42(9): 938-945.
[13] 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. (2018) 极小种群野生植物黄梅秤锤树群落结构与动态. 生物多样性, 26(7): 749-759.
[14] 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. (2018) 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构. 植物生态学报, 42(4): 419-429.
[15] 苏闯, 马文红, 张芯毓, 苏云, 闵永恩, 张晋元, 赵利清, 梁存柱. (2018) 贺兰山西坡主要山地灌丛群落的基本特征. 植物生态学报, 42(10): 1050-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed