Biodiv Sci ›› 2023, Vol. 31 ›› Issue (5): 23062. DOI: 10.17520/biods.2023062
• Reviews • Previous Articles Next Articles
Miao Li1,2,3,4, Chenyang Yao1,2,3,4, Xiaoyong Chen1,2,3,*()
Received:
2023-02-28
Accepted:
2023-04-20
Online:
2023-05-20
Published:
2023-05-03
Contact:
* E-mail: Miao Li, Chenyang Yao, Xiaoyong Chen. Application of environmental RNA technology in aquatic biological monitoring[J]. Biodiv Sci, 2023, 31(5): 23062.
迁移距离 Distance of transport | 存留时间 Duration of time | 区分生物活体 Distinguishing living communities | 揭示种群结构信息 Revealing information on population structure | 监测生物生理状态 Monitoring biophysiological status | |
---|---|---|---|---|---|
eDNA | 长 Long | 长 Long | × | × | × |
eRNA | 短 Short | 短 Short | √ | √ | √ |
Table 1 Comparison of eDNA and eRNA technical parameters
迁移距离 Distance of transport | 存留时间 Duration of time | 区分生物活体 Distinguishing living communities | 揭示种群结构信息 Revealing information on population structure | 监测生物生理状态 Monitoring biophysiological status | |
---|---|---|---|---|---|
eDNA | 长 Long | 长 Long | × | × | × |
eRNA | 短 Short | 短 Short | √ | √ | √ |
[1] |
Akbarzadeh A, Günther OP, Houde AL, Li SR, Ming TJ, Jeffries KM, Hinch SG, Miller KM (2018) Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics, 19, 749.
DOI PMID |
[2] |
Amarasiri M, Furukawa T, Nakajima F, Sei K (2021) Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. Science of the Total Environment, 796, 148810.
DOI URL |
[3] |
Baillon L, Pierron F, Oses J, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M (2016) Detecting the exposure to Cd and PCBs by means of a non-invasive transcriptomic approach in laboratory and wild contaminated European eels (Anguilla anguilla). Environmental Science and Pollution Research, 23, 5431-5441.
DOI URL |
[4] |
Baird DJ, Hajibabaei M (2012) Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology, 21, 2039-2044.
PMID |
[5] |
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H (2023) Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends in Parasitology, 39, 285-304.
DOI PMID |
[6] |
Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annual Review of Entomology, 51, 495-523.
PMID |
[7] |
Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel JB, Kiszka JJ, Kulbicki M, Manel S, Robbins WD, Vigliola L, Mouillot D (2018) Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4, eaap9661.
DOI URL |
[8] |
Chauvet M, Debroas D, Moné A, Dubuffet A, Lepère C (2022) Temporal variations of Microsporidia diversity and discovery of new hos-tparasite interactions in a lake ecosystem. Environmental Microbiology, 24, 1672-1686.
DOI PMID |
[9] |
Ciani E, Fontaine R, Maugars G, Nourizadeh-Lillabadi R, Andersson E, Bogerd J, von Krogh K, Weltzien FA (2020) Gnrh receptor gnrhr2bbα is expressed exclusively in lhb-expressing cells in Atlantic salmon male parr. General and Comparative Endocrinology, 285, 113293.
DOI URL |
[10] |
Cristescu ME (2019) Can environmental RNA revolutionize biodiversity science? Trends in Ecology & Evolution, 34, 694-697.
DOI URL |
[11] |
Cristescu ME, Hebert PDN (2018) Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics, 49, 209-230.
DOI URL |
[12] |
Drinkwater E, Robinson EJH, Hart AG (2019) Keeping invertebrate research ethical in a landscape of shifting public opinion. Methods in Ecology and Evolution, 10, 1265-1273.
DOI |
[13] |
Drozdova P, Rivarola-Duarte L, Bedulina D, Axenov-Gribanov D, Schreiber S, Gurkov A, Shatilina Z, Vereshchagina K, Lubyaga Y, Madyarova E, Otto C, Jühling F, Busch W, Jakob L, Lucassen M, Sartoris FJ, Hackermüller J, Hoffmann S, Pörtner HO, Luckenbach T, Timofeyev M, Stadler PF (2019) Comparison between transcriptomic responses to short-term stress exposures of a common Holarctic and endemic Lake Baikal amphipods. BMC Genomics, 20, 712.
DOI PMID |
[14] |
Erickson RA, Merkes CM, Mize EL (2019) Sampling designs for landscape-level eDNA monitoring programs. Integrated Environmental Assessment and Management, 15, 760-771.
DOI PMID |
[15] |
Evans NT, Lamberti GA (2018) Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research, 197, 60-66.
DOI URL |
[16] |
Farrell JA, Whitmore L, Duffy DJ (2021) The promise and pitfalls of environmental DNA and RNA approaches for the monitoring of human and animal pathogens from aquatic sources. BioScience, 71, 609-625.
DOI URL |
[17] | Friberg N, Bonada N, Bradley DC, Dunbar MJ, Edwards FK, Grey J, Hayes RB, Hildrew AG, Lamouroux N, Trimmer M, Woodward G (2011) Biomonitoring of human impacts in freshwater ecosystems: The good, the bad and the ugly. Advances in Ecological Research, 44, 1-68. |
[18] |
Giroux MS, Reichman JR, Langknecht T, Burgess RM, Ho KT (2022) Environmental RNA as a tool for marine community biodiversity assessments. Scientific Reports, 12, 17782.
DOI PMID |
[19] |
Houde ALS, Günther OP, Strohm J, Ming TJ, Li SR, Kaukinen KH, Patterson DA, Farrell AP, Hinch SG, Miller KM (2019a) Discovery and validation of candidate smoltification gene expression biomarkers across multiple species and ecotypes of Pacific salmonids. Conservation Physiology, 7, coz051.
DOI URL |
[20] | Houde ALS, Akbarzadeh A, Günther OP, Li SR, Patterson DA, Farrell AP, Hinch SG, Miller KM (2019b) Salmonid gene expression biomarkers indicative of physiological responses to changes in salinity and temperature, but not dissolved oxygen. The Journal of Experimental Biology, 222, jeb198036. |
[21] | Huang PP, Zhao F, Xu KD (2020) Effects of sedimentation of DNA from overlying waters on the evaluation of ciliate molecular diversity in offshore sediments. Oceanologia et Limnologia Sinica, 51, 602-612. (in Chinese with English abstract) |
[黄平平, 赵峰, 徐奎栋 (2020) 近海水体环境DNA沉降对沉积物中纤毛虫分子多样性评估的影响. 海洋与湖沼, 51, 602-612.] | |
[22] |
Huang PP, Zhao F, Xu KD (2021) Complementary DNA sequencing (cDNA): An effective approach for assessing the diversity and distribution of marine benthic ciliates along hydrographic gradients. Journal of Oceanology and Limnology, 39, 208-222.
DOI |
[23] |
Huang PP, Zhao F, Xu KD, Zhou T (2020) Are marine benthic microeukaryotes different from macrobenthos in terms of regional geographical distribution? New insights revealed by RNA metabarcoding. Continental Shelf Research, 209, 104255.
DOI URL |
[24] |
Huver JR, Koprivnikar J, Johnson PTJ, Whyard S (2015) Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecological Applications, 25, 991-1002.
DOI URL |
[25] | Jo T, Matsuda N, Hirohara T, Yamanaka H (2022a) Simple and efficient preservation of fish environmental RNA in filtered water samples via RNAlater. Research Square. |
[26] | Jo T, Tsuri K, Hirohara T, Yamanaka H (2022b) Warm temperature and alkaline conditions accelerate environmental RNA degradation. Environmental DNA, 1-13. |
[27] |
Jo T, Yamanaka H (2022) Meta-analyses of environmental DNA downstream transport and deposition in relation to hydrogeography in riverine environments. Freshwater Biology, 67, 1333-1343.
DOI URL |
[28] |
Kitahashi T, Sugime S, Inomata K, Nishijima M, Kato S, Yamamoto H (2020) Meiofaunal diversity at a seamount in the Pacific Ocean: A comprehensive study using environmental DNA and RNA. Deep Sea Research Part I: Oceanographic Research Papers, 160, 103253.
DOI URL |
[29] |
Laroche O, Wood SA, Tremblay LA, Lear G, Ellis JI, Pochon X (2017) Metabarcoding monitoring analysis: The pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ, 5, e3347.
DOI URL |
[30] |
Laroche O, Wood SA, Tremblay LA, Ellis JI, Lear G, Pochon X (2018) A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations. Marine Pollution Bulletin, 127, 97-107.
DOI PMID |
[31] |
Littlefair JE, Rennie MD, Cristescu ME (2022) Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Molecular Ecology Resources, 22, 2928-2940.
DOI PMID |
[32] |
Marcos PL, Adalberto LV (2015) Differentially expressed genes in the pituitary of the Amazonian fish Arapaima gigas. International Journal of Fisheries and Aquaculture, 7, 132-141.
DOI URL |
[33] |
Marshall NT, Vanderploeg HA, Chaganti SR (2021) Environmental (e)RNA advances the reliability of eDNA by predicting its age. Scientific Reports, 11, 2769.
DOI PMID |
[34] |
Mérou N, Lecadet C, Pouvreau S, Arzul I (2020) An eDNA/eRNA-based approach to investigate the life cycle of non-cultivable shellfish micro-parasites: The case of Bonamia ostreae, a parasite of the European flat oyster Ostrea edulis. Microbial Biotechnology, 13, 1807-1818.
DOI URL |
[35] |
Miaud C, Arnal V, Poulain M, Valentini A, Dejean T (2019) eDNA increases the detectability of Ranavirus infection in an alpine amphibian population. Viruses, 11, 526.
DOI URL |
[36] | Miller KM, Günther OP, Li SR, Kaukinen KH, Ming TJ (2017) Molecular indices of viral disease development in wild migrating salmon. Conservation Physiology, 5, cox036. |
[37] |
Miyata K, Inoue Y, Amano Y, Nishioka T, Nagaike T, Kawaguchi T, Morita O, Yamane M, Honda H (2022) Comparative environmental RNA and DNA metabarcoding analysis of river algae and arthropods for ecological surveys and water quality assessment. Scientific Reports, 12, 19828.
DOI PMID |
[38] |
Miyata K, Inoue Y, Amano Y, Nishioka T, Yamane M, Kawaguchi T, Morita O, Honda H (2021) Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecological Indicators, 128, 107796.
DOI URL |
[39] |
Nie HT, Jiang LW, Chen P, Huo ZM, Yang F, Yan XW (2017) High throughput sequencing of RNA transcriptomes in Ruditapes philippinarum identifies genes involved in osmotic stress response. Scientific Reports, 7, 4953.
DOI |
[40] |
Oomen RA, Hutchings JA (2017) Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing. FACETS, 2, 610-641.
DOI URL |
[41] | Orsini L, Brown JB, Shams Solari O, Li D, He S, Podicheti R, Stoiber MH, Spanier KI, Gilbert D, Jansen M, Rusch DB, Pfrender ME, Colbourne JK, Frilander MJ, Kvist J, Decaestecker E, De Schamphelaere KAC, De Meester L (2018) Early transcriptional response pathways in Daphnia magna are coordinated in networks of crustacean-specific genes. Molecular Ecology, 27, 886-897. |
[42] |
Pearman JK, Biessy L, Howarth JD, Vandergoes MJ, Rees A, Wood SA (2022) Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Molecular Ecology Resources, 22, 877-890.
DOI URL |
[43] |
Peters L, Spatharis S, Dario MA, Dwyer T, Roca IJT, Kintner A, Kanstad-Hanssen Ø, Llewellyn MS, Praebel K (2018) Environmental DNA: A new low-cost monitoring tool for pathogens in salmonid aquaculture. Frontiers in Microbiology, 9, 3009.
DOI PMID |
[44] |
Qian TY, Shan XJ, Wang WJ, Jin XS (2022) Effects of temperature on the timeliness of eDNA/eRNA: A case study of Fenneropenaeus chinensis. Water, 14, 1155.
DOI URL |
[45] | Ravindran SP, Lüneburg J, Gottschlich L, Tams V, Cordellier M (2019) Daphnia stressor database: Taking advantage of a decade of Daphnia ‘-omics’ data for gene annotation. Scientific Reports, 9, 11135. |
[46] |
Sato Y, Mizuyama M, Sato M, Minamoto T, Kimura R, Toma C (2019) Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in leptospirosis-endemic areas of Japan. Scientific Reports, 9, 6575.
DOI |
[47] | Shan XJ, Li M, Wang WJ (2018) Application of environmental DNA technology in aquatic ecosystem. Progress in Fishery Sciences, 39(3), 23-29. (in Chinese with English abstract) |
[单秀娟, 李苗, 王伟继 (2018) 环境DNA (eDNA)技术在水生生态系统中的应用研究进展. 渔业科学进展, 39(3), 23-29.] | |
[48] | Shen M, Xiao NW, Lu L, Luo ZL, Shi NN, Sun G (2022) Review of environmental DNA detection methods and their application to fish monitoring. Journal of Hydroecology, 43, 133-141. (in Chinese with English abstract) |
[沈梅, 肖能文, 卢林, 罗遵兰, 史娜娜, 孙光 (2022) 环境DNA技术及在鱼类监测中的应用. 水生态学杂志, 43, 133-141.] | |
[49] |
Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF (2020) Population-level inferences from environmental DNA—Current status and future perspectives. Evolutionary Applications, 13, 245-262.
DOI PMID |
[50] |
Skaftnesmo KO, Edvardsen RB, Furmanek T, Crespo D, Andersson E, Kleppe L, Taranger GL, Bogerd J, Schulz RW, Wargelius A (2017) Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon. BMC Genomics, 18, 801.
DOI PMID |
[51] |
Spanier KI, Jansen M, Decaestecker E, Hulselmans G, Becker D, Colbourne JK, Orsini L, De Meester L, Aerts S (2017) Conserved transcription factors steer growth-related genomic programs in Daphnia. Genome Biology and Evolution, 9, 1821-1842.
DOI PMID |
[52] |
Stevens JD, Parsley MB (2023) Environmental RNA applications and their associated gene targets for management and conservation. Environmental DNA, 5, 227-239.
DOI URL |
[53] |
Stubbington R, Chadd R, Cid N, Csabai Z, Miliša M, Morais M, Munné A, Pařil P, Pešić V, Tziortzis I, Verdonschot RCM, Datry T (2018) Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments. Science of the Total Environment, 618, 1096-1113.
DOI URL |
[54] |
Taengphu S, Kayansamruaj P, Kawato Y, Delamare-Deboutteville J, Mohan CV, Dong HT, Senapin S (2022) Concentration and quantification of Tilapia tilapinevirus from water using a simple iron flocculation coupled with probe-based RT-qPCR. PeerJ, 10, e13157.
DOI URL |
[55] |
Tsuri K, Ikeda S, Hirohara T, Shimada Y, Minamoto T, Yamanaka H (2021) Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates. Environmental DNA, 3, 14-21.
DOI URL |
[56] | Veilleux HD, Misutka MD, Glover CN (2021) Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Science of the Total Environment, 782, 146891. |
[57] |
von Ammon U, Wood SA, Laroche O, Zaiko A, Lavery SD, Inglis GJ, Pochon X (2019) Linking environmental DNA and RNA for improved detection of the marine invasive fanworm Sabella spallanzanii. Frontiers in Marine Science, 6, 621.
DOI URL |
[58] | Wang M, Jin XW, Lin XL, Du LN, Cui YD, Wu XP, Sun HY, Xie ZC, Wang XH, Wang BX (2021) Advances in the macrozoobenthos biodiversity monitoring and ecosystem assessment using environmental DNA metabarcoding. Acta Ecologica Sinica, 41, 7440-7453. (in Chinese with English abstract) |
[王萌, 金小伟, 林晓龙, 杜丽娜, 崔永德, 吴小平, 孙红英, 谢志才, 王新华, 王备新 (2021) 基于环境DNA-宏条形码技术的底栖动物监测及水质评价研究进展. 生态学报, 41, 7440-7453.] | |
[59] |
Ward GM, Feist SW, Noguera P, Marcos-López M, Ross S, Green M, Urrutia A, Bass D (2019) Detection and characterisation of haplosporidian parasites of the blue mussel Mytilus edulis, including description of the novel parasite Minchinia mytili n. sp. Diseases of Aquatic Organisms, 133, 57-68.
DOI URL |
[60] |
Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki KI, Obara M, Yoshizato K (2002) Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene. Developmental Dynamics, 225, 561-570.
PMID |
[61] |
Wood SA, Biessy L, Latchford JL, Zaiko A, von Ammon U, Audrezet F, Cristescu ME, Pochon X (2020) Release and degradation of environmental DNA and RNA in a marine system. Science of the Total Environment, 704, 135314.
DOI URL |
[62] |
Wu H, Xu XH, Feng XJ, Mi XC, Su YJ, Xiao ZS, Zhu CD, Cao L, Gao X, Song CY, Guo LD, Wu DH, Jiang JP, Shen H, Ma KP (2022) Progress and prospect of China biodiversity monitoring from a global perspective. Biodiversity Science, 30, 22434. (in Chinese with English abstract)
DOI |
[吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平 (2022) 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 30, 22434.]
DOI |
|
[63] |
Yates MC, Derry AM, Cristescu ME (2021) Environmental RNA: A revolution in ecological resolution? Trends in Ecology & Evolution, 36, 601-609.
DOI URL |
[64] |
Zaiko A, von Ammon U, Stuart J, Smith KF, Yao R, Welsh M, Pochon X, Bowers HA (2022) Assessing the performance and efficiency of environmental DNA/RNA capture methodologies under controlled experimental conditions. Methods in Ecology and Evolution, 13, 1581-1594.
DOI URL |
[65] | Zhao YW, Chen JQ, Dong L, Ma XM, Bai J, Tian K (2021) Advances in the application of environmental DNA in aquatic ecosystems. Journal of Agro-Environment Science, 40, 2057-2065. (in Chinese with English abstract) |
[赵彦伟, 陈家琪, 董丽, 麻晓梅, 白洁, 田凯 (2021) 环境DNA技术在水生态领域应用研究进展. 农业环境科学学报, 40, 2057-2065.] | |
[66] |
Zilius M, Samuiloviene A, Stanislauskienė R, Broman E, Bonaglia S, Meškys R, Zaiko A (2021) Depicting temporal, functional, and phylogenetic patterns in estuarine diazotrophic communities from environmental DNA and RNA. Microbial Ecology, 81, 36-51.
DOI |
[1] | Yihui Jiang, Yue Liu, Xu Zeng, Zheying Lin, Nan Wang, Jihao Peng, Ling Cao, Cong Zeng. Fish diversity and connectivity in six national marine protected areas in the East China Sea [J]. Biodiv Sci, 2024, 32(6): 24128-. |
[2] | Yu Tian, Junsheng Li. Analysis of the connotation and implementation path for the 30 by 30 target in the Kunming-Montreal Global Biodiversity Framework [J]. Biodiv Sci, 2024, 32(6): 24086-. |
[3] | Biyu Ma. Summary of amendments to India’s Biological Diversity Act and enlightenments for improving China’s legal system of biodiversity conservation [J]. Biodiv Sci, 2024, 32(5): 23412-. |
[4] | Yingli Cai, Hongge Zhu, Jiaxin Li. Biodiversity conservation in China: Policy evolution, main measures and development trends [J]. Biodiv Sci, 2024, 32(5): 23386-. |
[5] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[6] | Dekui Yan. Common elements, deficiencies, and optimization suggestions of biodiversity conservation policies in China [J]. Biodiv Sci, 2024, 32(5): 23293-. |
[7] | Fuwei Zhao, Yingshuo Li, Hui Chen. Reflections on biodiversity legislation in China’s new era [J]. Biodiv Sci, 2024, 32(5): 24027-. |
[8] | Jingzhou Liu, Yixin Qian, Yanxuedan Zhang, Feng Cui. Research progress and implications of flagship species paradigms based on latent Dirichlet allocation (LDA) model [J]. Biodiv Sci, 2024, 32(4): 23439-. |
[9] | Lejie Wu, Zekang Liu, Xing Tian, Qun Zhang, Bo Li, Jihua Wu. Effects of genotypic diversity on vegetative growth and reproductive strategies of Scirpus mariqueter population [J]. Biodiv Sci, 2024, 32(4): 23478-. |
[10] | Xuemeng Li, Jibao Jiang, Zenglu Zhang, Xiaojing Liu, Yali Wang, Yizhao Wu, Yinsheng Li, Jiangping Qiu, Qi Zhao. Earthworm biodiversity and its influencing factors in Baotianman National Nature Reserve [J]. Biodiv Sci, 2024, 32(4): 23352-. |
[11] | Cao Hao, Donghui Wu, Lingzi Mo, Guoliang Xu. A review on gut microbial diversity and function of overwintering animals [J]. Biodiv Sci, 2024, 32(3): 23407-. |
[12] | Haiou Liu, Leshan Du, Wenhui Liu, Ziyuan Li, Libo Pan, Lei Liu. Analysis and enlightenment on Global Biodiversity Framework Fund management policy [J]. Biodiv Sci, 2024, 32(3): 23334-. |
[13] | Jiaxin Wei, Zhiguo Jiang, Linsen Yang, Huanhuan Xiong, Jiaojiao Jin, Fanglin Luo, Jiehua Li, Hao Wu, Yaozhan Xu, Xiujuan Qiao, Xinzeng Wei, Hui Yao, Huiliang Yu, Jingyuan Yang, Mingxi Jiang. Community composition and structure in a 25 ha mid-subtropical mountain deciduous broad-leaved forest dynamics plot in Shennongjia, Hubei, China [J]. Biodiv Sci, 2024, 32(3): 23338-. |
[14] | He Zhirong, Wu Siyu, Shi Yingying, Wang Yuting, Jiang Yixin, Zhang Chunna, Zhao Na, Wang Supen. Current status and challenges on the effects of chytrid infection on amphibian populations [J]. Biodiv Sci, 2024, 32(2): 23274-. |
[15] | Peng Yunyue, Jin Tong, Zhang Xiaoquan. Biodiversity credits: Concepts, principles, transactions and challenges [J]. Biodiv Sci, 2024, 32(2): 23300-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn