Biodiv Sci ›› 2023, Vol. 31 ›› Issue (3): 22346. DOI: 10.17520/biods.2022346
Special Issue: 生物入侵
• Original Papers: Genetic Diversity • Previous Articles Next Articles
Jiajia Pu1, Pingjun Yang2, Yang Dai3, Kexin Tao1, Lei Gao4, Yuzhou Du5, Jun Cao3, Xiaoping Yu1, Qianqian Yang1,*()
Received:
2022-06-24
Accepted:
2022-09-05
Online:
2023-03-20
Published:
2022-12-30
Contact:
Qianqian Yang
Jiajia Pu, Pingjun Yang, Yang Dai, Kexin Tao, Lei Gao, Yuzhou Du, Jun Cao, Xiaoping Yu, Qianqian Yang. Species identification and population genetic structure of non-native apple snails (Ampullariidea: Pomacea) in the lower reaches of the Yangtze River[J]. Biodiv Sci, 2023, 31(3): 22346.
序号 Code | 地点 Locality | 编号 Code | 经度 Longitude (E) | 纬度 Latitude (N) | 生境 Habitat | 序列数量 No. of sequences |
---|---|---|---|---|---|---|
1 | 上海市宝山区三星村 Sanxing Village, Baoshan District, Shanghai | SHBS | 121.36° | 31.31° | 河道 River | 20 |
2 | 苏州市吴中区甪直镇 Luzhi Town, Wuzhong District, Suzhou City | WZLZ | 120.48° | 31.14° | 水生蔬菜田 Aquatic vegetable field | 30 |
3 | 苏州市吴中区马家浜村 Majiabang Village, Wuzhong District, Suzhou City | WZMJB | 120.46° | 31.14° | 水生蔬菜田 Aquatic vegetable field | 30 |
4 | 昆山市周庄镇 Zhouzhuang Town, Kunshan City | KSZZ | 120.56° | 31.21° | 稻田 Paddy field | 30 |
5 | 常熟市尚湖镇 Shanghu Town, Changshu City | CSSH | 120.42° | 31.36° | 稻田 Paddy field | 30 |
6 | 常熟市古里镇 Guli Town, Changshu City | CSGL | 120.85° | 31.65° | 稻田 Paddy field | 15 |
7 | 张家港市凤凰镇鸷山 Fenghuang Town, Zhangjiagang City | ZJGFH | 120.62° | 31.76° | 沟渠 Ditch | 17 |
8 | 张家港市凤凰镇杏市村 Xingshi Village, Fenghuang Town, Zhangjiagang City | ZJGXSC | 120.68° | 31.78° | 稻田 Paddy field | 28 |
9 | 扬州市广陵区沙头镇 Shatou Town, Guangling District, Yangzhou City | JSYZ | 119.50° | 32.34° | 河道 River | 30 |
10 | 泰州市兴化市大邹镇顾马村 Guma Village, Dazou Town, Xinghua City, Taizhou City | JSTZ | 119.92° | 33.15° | 河道、蟹田 River, crab field | 30 |
11 | 宿迁市泗洪县 Sihong County, Suqian City | JSSQ | 118.25° | 33.47° | 湖泊 Lake | 10 |
Table 1 Sampling information of the apple snails collected from the lower reaches of the Yangtze River
序号 Code | 地点 Locality | 编号 Code | 经度 Longitude (E) | 纬度 Latitude (N) | 生境 Habitat | 序列数量 No. of sequences |
---|---|---|---|---|---|---|
1 | 上海市宝山区三星村 Sanxing Village, Baoshan District, Shanghai | SHBS | 121.36° | 31.31° | 河道 River | 20 |
2 | 苏州市吴中区甪直镇 Luzhi Town, Wuzhong District, Suzhou City | WZLZ | 120.48° | 31.14° | 水生蔬菜田 Aquatic vegetable field | 30 |
3 | 苏州市吴中区马家浜村 Majiabang Village, Wuzhong District, Suzhou City | WZMJB | 120.46° | 31.14° | 水生蔬菜田 Aquatic vegetable field | 30 |
4 | 昆山市周庄镇 Zhouzhuang Town, Kunshan City | KSZZ | 120.56° | 31.21° | 稻田 Paddy field | 30 |
5 | 常熟市尚湖镇 Shanghu Town, Changshu City | CSSH | 120.42° | 31.36° | 稻田 Paddy field | 30 |
6 | 常熟市古里镇 Guli Town, Changshu City | CSGL | 120.85° | 31.65° | 稻田 Paddy field | 15 |
7 | 张家港市凤凰镇鸷山 Fenghuang Town, Zhangjiagang City | ZJGFH | 120.62° | 31.76° | 沟渠 Ditch | 17 |
8 | 张家港市凤凰镇杏市村 Xingshi Village, Fenghuang Town, Zhangjiagang City | ZJGXSC | 120.68° | 31.78° | 稻田 Paddy field | 28 |
9 | 扬州市广陵区沙头镇 Shatou Town, Guangling District, Yangzhou City | JSYZ | 119.50° | 32.34° | 河道 River | 30 |
10 | 泰州市兴化市大邹镇顾马村 Guma Village, Dazou Town, Xinghua City, Taizhou City | JSTZ | 119.92° | 33.15° | 河道、蟹田 River, crab field | 30 |
11 | 宿迁市泗洪县 Sihong County, Suqian City | JSSQ | 118.25° | 33.47° | 湖泊 Lake | 10 |
Fig. 1 Sampling locations of the apple snails and grouping based on AMOVA hierarchical analysis. Solid circles represent sampling points, the frames in same linetype indicates a population group, the meaning of the abbreviation in the figure is shown in Table 1.
Fig. 3 The phylogenetic tree constructed by the haplotypes of apple snails from the lower reaches of the Yangtze River. The branch nodes of phylogenetic trees denote neighbor-joining/ Bayesian inference bootstrap supports. Only the values > 60% are displayed; Hap1-10 shown in bold are haplotypes generated from COI sequences from this study.
单倍型 Haplotype | 序列数量 No. of sequences (%) | SHBS | WZLZ | WZMJB | KSZZ | CSSH | CSGL | ZJGFH | ZJGXSC | JSYZ | JSTZ | JSSQ | 物种 Species |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hap1 | 126 (46.67) | 19 | 23 | 16 | 30 | 27 | - | - | - | - | 2 | 9 | 小管福寿螺Pomacea canaliculata |
Hap2 | 15 (5.56) | - | - | - | - | - | - | 10 | - | - | 5 | - | 小管福寿螺 P. canaliculata |
Hap3 | 21 (7.78) | - | - | - | - | - | 15 | 6 | - | - | - | - | 小管福寿螺 P. canaliculata |
Hap4 | 28 (10.37) | - | - | - | - | - | - | - | 28 | - | - | - | 小管福寿螺 P. canaliculata |
Hap5 | 22 (8.15) | - | 7 | 14 | - | 1 | - | - | - | - | - | - | 小管福寿螺 P. canaliculata |
Hap6 | 18 (6.67) | - | - | - | - | - | - | - | - | 18 | - | - | 小管福寿螺 P. canaliculata |
Hap7 | 1 (0.37) | 1 | - | - | - | - | - | - | - | - | 小管福寿螺 P. canaliculata | ||
Hap8 | 2 (0.74) | - | - | - | - | 2 | - | - | - | - | 小管福寿螺 P. canaliculata | ||
Hap9 | 1 (0.37) | - | - | - | - | - | - | 1 | - | - | - | - | 小管福寿螺 P. canaliculata |
Hap10 | 36 (13.33) | - | - | - | - | - | - | - | - | 12 | 23 | 1 | 斑点福寿螺 P. maculata |
Table 2 Distribution of COI haplotypes of the populations from this study. Location code see Table 1.
单倍型 Haplotype | 序列数量 No. of sequences (%) | SHBS | WZLZ | WZMJB | KSZZ | CSSH | CSGL | ZJGFH | ZJGXSC | JSYZ | JSTZ | JSSQ | 物种 Species |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hap1 | 126 (46.67) | 19 | 23 | 16 | 30 | 27 | - | - | - | - | 2 | 9 | 小管福寿螺Pomacea canaliculata |
Hap2 | 15 (5.56) | - | - | - | - | - | - | 10 | - | - | 5 | - | 小管福寿螺 P. canaliculata |
Hap3 | 21 (7.78) | - | - | - | - | - | 15 | 6 | - | - | - | - | 小管福寿螺 P. canaliculata |
Hap4 | 28 (10.37) | - | - | - | - | - | - | - | 28 | - | - | - | 小管福寿螺 P. canaliculata |
Hap5 | 22 (8.15) | - | 7 | 14 | - | 1 | - | - | - | - | - | - | 小管福寿螺 P. canaliculata |
Hap6 | 18 (6.67) | - | - | - | - | - | - | - | - | 18 | - | - | 小管福寿螺 P. canaliculata |
Hap7 | 1 (0.37) | 1 | - | - | - | - | - | - | - | - | 小管福寿螺 P. canaliculata | ||
Hap8 | 2 (0.74) | - | - | - | - | 2 | - | - | - | - | 小管福寿螺 P. canaliculata | ||
Hap9 | 1 (0.37) | - | - | - | - | - | - | 1 | - | - | - | - | 小管福寿螺 P. canaliculata |
Hap10 | 36 (13.33) | - | - | - | - | - | - | - | - | 12 | 23 | 1 | 斑点福寿螺 P. maculata |
Fig. 4 Haplotype network of Pomacea canaliculata based on TCS model. The haplotypes network of P. canaliculata splits into four sub-networks (A?D) under 95% parsimony limit. The size of the circles represents the number of sequences. Pattern types represent different geographical populations, with the white circles indicating missing haplotypes.
Fig. 5 Haplotype network of Pomacea maculata based on TCS model. The haplotypes network of P. maculata splits into seven sub-networks (A?G) under 95% parsimony limit. The size of the circles represents the number of sequences. Pattern types represent different geographical populations, with the white circles indicating missing haplotypes.
物种 Species | 地理种群 Region | 序列数 No. of sequences | 单倍型数 No. of haplotypes | 单倍型多样性 Haplotype diversity (Hd) | 核苷酸多样性 Nucleotide diversity (π) | 核苷酸平均差异数 Average number of nucleotide difference (k) |
---|---|---|---|---|---|---|
小管福寿螺 Pomacea canaliculata | 长江以南 South of the Yangtze River | 200 | 8 | 0.627 | 0.02546 | 14.744 |
长江以北 North of the Yangtze River | 34 | 3 | 0.611 | 0.02541 | 14.713 | |
中国大陆已发表 Published by China’s mainland | 319 | 7 | 0.587 | 0.02543 | 14.722 | |
香港 Hong Kong | 139 | 5 | 0.441 | 0.01956 | 11.324 | |
斑点福寿螺 P. maculata | 江苏 Jiangsu | 36 | 1 | 0.000 | 0.00000 | 0.000 |
中国大陆已发表 Published by China’s mainland | 30 | 2 | 0.067 | 0.00035 | 0.200 | |
香港 Hong Kong | 10 | 2 | 0.356 | 0.00430 | 2.489 |
Table 3 Distribution of population genetic diversity of Pomacea canaliculata and P. maculata from this study, published by China’s mainland and Hong Kong, and this study
物种 Species | 地理种群 Region | 序列数 No. of sequences | 单倍型数 No. of haplotypes | 单倍型多样性 Haplotype diversity (Hd) | 核苷酸多样性 Nucleotide diversity (π) | 核苷酸平均差异数 Average number of nucleotide difference (k) |
---|---|---|---|---|---|---|
小管福寿螺 Pomacea canaliculata | 长江以南 South of the Yangtze River | 200 | 8 | 0.627 | 0.02546 | 14.744 |
长江以北 North of the Yangtze River | 34 | 3 | 0.611 | 0.02541 | 14.713 | |
中国大陆已发表 Published by China’s mainland | 319 | 7 | 0.587 | 0.02543 | 14.722 | |
香港 Hong Kong | 139 | 5 | 0.441 | 0.01956 | 11.324 | |
斑点福寿螺 P. maculata | 江苏 Jiangsu | 36 | 1 | 0.000 | 0.00000 | 0.000 |
中国大陆已发表 Published by China’s mainland | 30 | 2 | 0.067 | 0.00035 | 0.200 | |
香港 Hong Kong | 10 | 2 | 0.356 | 0.00430 | 2.489 |
变异来源 Source of variation | 自由度 Degree of freedom | 平方和 Sum of squares | 方差组分 Variance components | 变异百分率 Percentage of variation (%) |
---|---|---|---|---|
组群间 Among groups | 2 | 122.265 | 9.56034 | 7.37 |
组群内种群间 Among populations within groups | 8 | 165.622 | 0.89486 | 7.24 |
种群内个体间 Among individuals within populations | 223 | 423.865 | 1.90074 | 15.38 |
总变异 Total variation | 233 | 1,811.752 | 12.35594 | 100.00 |
Table 4 Variance analysis of COI molecular variation among populations of Pomacea canaliculata in the lower reaches of the Yangtze River
变异来源 Source of variation | 自由度 Degree of freedom | 平方和 Sum of squares | 方差组分 Variance components | 变异百分率 Percentage of variation (%) |
---|---|---|---|---|
组群间 Among groups | 2 | 122.265 | 9.56034 | 7.37 |
组群内种群间 Among populations within groups | 8 | 165.622 | 0.89486 | 7.24 |
种群内个体间 Among individuals within populations | 223 | 423.865 | 1.90074 | 15.38 |
总变异 Total variation | 233 | 1,811.752 | 12.35594 | 100.00 |
Fig. 6 Introgressive hybridization of the apple snails in the lower reaches of the Yangtze River based on EF1α gene multiplex PCR method. M, 50 bp DNA ladder; 1?6 represent for M type, B type, C type, C type, C type, and B type of samples of apple snails collected in the lower reaches of the Yangtze River.
[1] |
Brito FC, Joshi RC (2016) The golden apple snail Pomacea canaliculata: A review on invasion, dispersion and control. Outlooks on Pest Management, 27, 157-163.
DOI URL |
[2] |
Clement M, Posada D, Crandall KA (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657-1659.
DOI PMID |
[3] | Cowie RH, Hayes KA, Thiengo SC (2006) What are apple snails? Confused taxonomy and some preliminary resolution. In: Global Advances in Ecology and Management of Golden Apple Snails (eds Joshi RC, Sebastian LS), pp. 3-23. Philippine Rice Research Institute, Munñoz. |
[4] |
Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
DOI PMID |
[5] |
Eyer PA, Blumenfeld AJ, Johnson LNL, Perdereau E, Shults P, Wang SC, Dedeine F, Dupont S, Bagnères AG, Vargo EL (2021) Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Molecular Ecology, 30, 3948-3964.
DOI URL |
[6] |
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
PMID |
[7] |
Freeland JR, Boag PT (1999) The mitochondrial and nuclear genetic homogeneity of the phenotypically diverse Darwin’s ground finches. Evolution, 53, 1553-1563.
DOI PMID |
[8] |
Glasheen PM, Burks RL, Campos SR, Hayes KA (2020) First evidence of introgressive hybridization of apple snails (Pomacea spp.) in their native range. Journal of Molluscan Studies, 86, 96-103.
DOI PMID |
[9] |
Hayes KA, Burks RL, Castro-Vazquez A, Darby PC, Heras H, Martín PR, Qiu JW, Thiengo SC, Vega IA, Wada T, Yusa Y, Burela S, Pilar Cadierno M, Cueto JA, Dellagnola FA, Dreon MS, Victoria Frassa M, Giraud-Billoud M, Godoy MS, Ituarte S, Koch E, Matsukura K, Yanina Pasquevich M, Rodriguez C, Saveanu L, Seuffert ME, Strong EE, Sun J, Tamburi NE, Tiecher MJ, Turner RL, Valentine-Darby PL, Cowie RH (2015) Insights from an integrated view of the biology of apple snails (Caenogastropoda: Ampullariidae). Malacologia, 58, 245-302.
DOI URL |
[10] |
Hayes KA, Cowie RH, Thiengo SC (2009) A global phylogeny of apple snails: Gondwanan origin, generic relationships, and the influence of outgroup choice (Caenogastropoda: Ampullariidae). Biological Journal of the Linnean Society, 98, 61-76.
DOI URL |
[11] |
Hayes KA, Cowie RH, Thiengo SC, Strong EE (2012) Comparing apples with apples: Clarifying the identities of two highly invasive Neotropical Ampullariidae (Caenogas- tropoda). Zoological Journal of the Linnean Society, 166, 723-753.
DOI URL |
[12] |
Hayes KA, Joshi RC, Thiengo SC, Cowie RH (2008) Out of South America: Multiple origins of non-native apple snails in Asia. Diversity and Distributions, 14, 701-712.
DOI URL |
[13] | Ji XM, Wang AX, Fang LC, Li CL, Xu L, Yang SK, Liu XB, Zhong L, Liu YM (2020) Investigation on the distribution of apple snail (Pomacea canaliculata) in the lower reaches of Yangtze River in China. Hubei Agricultural Sciences, 59, 111-116, 124. (in Chinese with English abstract) |
[戢小梅, 王爱新, 方林川, 李长林, 许林, 杨守坤, 刘宪葆, 钟兰, 刘义满 (2020) 中国长江下游地区福寿螺分布现状考察. 湖北农业科学, 59, 111-116, 124.] | |
[14] |
Kagawa K, Takimoto G (2018) Hybridization can promote adaptive radiation by means of transgressive segregation. Ecology Letters, 21, 264-274.
DOI PMID |
[15] |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.
DOI PMID |
[16] |
Lei JC, Chen L, Li H (2017) Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Environmental Monitoring and Assessment, 189, 404.
DOI PMID |
[17] |
Liu QQ, Dong ZJ (2018) Population genetic structure of Gonionemus vertens based on the mitochondrial COI sequence. Biodiversity Science, 26, 1204-1211. (in Chinese with English abstract)
DOI URL |
[刘青青, 董志军 (2018) 基于线粒体COI基因分析钩手水母的群体遗传结构. 生物多样性, 26, 1204-1211.]
DOI |
|
[18] | Liu YM, Li CL, Jin L, Pei X, Chen XB, Wang AX, Ji XM, Zhong L (2020) Investigation on northernmost distribution areas of apple snail (Pomacea canaliculata) in upper reaches of Yangtze River. Journal of Changjiang Vegetables, (12), 53-57. (in Chinese with English abstract) |
[刘义满, 李长林, 金莉, 裴忺, 陈绪柏, 王爱新, 戢小梅, 钟兰 (2020) 长江上游地区福寿螺北缘分布地区调查. 长江蔬菜, (12), 53-57.] | |
[19] | Luo D, Wang XJ, Xu M, Gu DE, Mu XD, Wei H, Yang YX, Demayo CG, Hu YC (2018) Correlation between shell-body mass ratio and hydrostatic settling characteristics of mollusc species. Acta Ecologica Sinica, 38, 6778-6785. (in Chinese with English abstract) |
[罗渡, 汪学杰, 徐猛, 顾党恩, 牟希东, 韦慧, 杨叶欣, Cesar G. Demayo, 胡隐昌 (2018) 贝类壳-体质量比和静水沉降特性的相关性. 生态学报, 38, 6778-6785.] | |
[20] |
Lv S, Zhang Y, Steinmann P, Yang GJ, Yang K, Zhou XN, Utzinger J (2011) The emergence of angiostrongyliasis in the People’s Republic of China: The interplay between invasive snails, climate change and transmission dynamics. Freshwater Biology, 56, 717-734.
DOI URL |
[21] |
Matsukura K, Izumi Y, Yoshida K, Wada T (2016) Cold tolerance of invasive freshwater snails, Pomacea canaliculata, P. maculata, and their hybrids helps explain their different distributions. Freshwater Biology, 61, 80-87.
DOI URL |
[22] |
Matsukura K, Okuda M, Cazzaniga NJ, Wada T (2013) Genetic exchange between two freshwater apple snails, Pomacea canaliculata and Pomacea maculata invading East and Southeast Asia. Biological Invasions, 15, 2039-2048.
DOI URL |
[23] |
Matsukura K, Okuda M, Kubota K, Wada T (2008) Genetic divergence of the genus Pomacea (Gastropoda: Ampullariidae) distributed in Japan, and a simple molecular method to distinguish P. canaliculata and P. insularum. Applied Entomology and Zoology, 43, 535-540.
DOI URL |
[24] |
Morrison WE, Hay ME (2011) Feeding and growth of native, invasive and non-invasive alien apple snails (Ampullariidae) in the United States: Invasives eat more and grow more. Biological Invasions, 13, 945-955.
DOI URL |
[25] |
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
DOI PMID |
[26] | Qian ZJ, Lin YF, Yang YT, Chen SH, Hu YP, Zhou X, Li H, Ding H, Chen L (2021) Genetic diversity of invasive Pomacea snails in Suzhou City. Chinese Journal of Zoology, 56, 929-938. (in Chinese with English abstract) |
[钱子衿, 林友福, 杨雨婷, 陈书涵, 胡亚萍, 周旭, 李宏, 丁晖, 陈炼 (2021) 苏州市入侵福寿螺的遗传多样性. 动物学杂志, 56, 929-938.] | |
[27] |
Rawlings TA, Hayes KA, Cowie RH, Collins TM (2007) The identity, distribution, and impacts of non-native apple snails in the continental United States. BMC Evolutionary Biology, 7, 97.
PMID |
[28] |
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
DOI PMID |
[29] |
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299-3302.
DOI PMID |
[30] |
VanWallendael A, Alvarez M, Franks SJ (2021) Patterns of population genomic diversity in the invasive Japanese knotweed species complex. American Journal of Botany, 108, 857-868.
DOI PMID |
[31] | Wang L, Mo KL, Chen QW, Zhang JY, Xia J, Lin YQ (2019) Estimating ecological flows for fish overwintering in plain rivers using a method based on water temperature and critical water depth. Ecohydrology, 12, e2098. |
[32] | Yang HF, Yang SP, Wang P, Zhou WC (2018) Prediction of potential geographical distribution area of golden apple snail (Pomacea canaliculata) in China. Acta Agriculturae Jiangxi, 30(3), 70-73. (in Chinese with English abstract) |
[杨海芳, 杨姗萍, 王沛, 周卫川 (2018) 福寿螺在中国的潜在地理分布区预测. 江西农业学报, 30(3), 70-73.] | |
[33] |
Yang QQ, He C, Liu GF, Yin CL, Xu YP, Liu SW, Qiu JW, Yu XP (2020) Introgressive hybridization between two non-native apple snails in China: Widespread hybridization and homogenization in egg morphology. Pest Management Science, 76, 4231-4239.
DOI URL |
[34] |
Yang QQ, Ip J C-H, Zhao XX, Li JN, Jin YJ, Yu XP, Qiu JW (2022) Molecular analyses revealed three morphologically similar species of non-native apple snails and their patterns of distribution in freshwater wetlands of Hong Kong. Diversity and Distributions, 28, 97-111.
DOI URL |
[35] |
Yang QQ, Liu SW, He C, Cowie RH, Yu XP, Hayes KA (2019) Invisible apple snail invasions: Importance of continued vigilance and rigorous taxonomic assessments. Pest Management Science, 75, 1277-1286.
DOI PMID |
[36] |
Yang QQ, Liu SW, He C, Yu XP (2018) Distribution and the origin of invasive apple snails, Pomacea canaliculata and P. maculata (Gastropoda: Ampullariidae) in China. Scientific Reports, 8, 1185.
DOI |
[37] |
Yang QQ, Liu SW, Ru WD, Liu GF, Yu XP (2016) Molecular identification of invasive golden apple snails in Zhejiang Province based on DNA barcoding. Biodiversity Science, 24, 341-350. (in Chinese with English abstract)
DOI |
[杨倩倩, 刘苏汶, 茹炜岽, 刘光富, 俞晓平 (2016) 基于DNA条形码技术对浙江省外来入侵福寿螺进行分子鉴定. 生物多样性, 24, 341-350.]
DOI |
|
[38] | Yang QQ, Yu XP (2019) A new species of apple snail in the genus Pomacea (Gastropoda: Caenogastropoda: Ampullarii- dae). Zoological Studies, 58, e13. |
[39] | Yang YX, Hu YC, Li XH, Wang XJ, Mu XD, Song HM, Wang PX, Liu C, Luo JR (2010) Historical invasion, expansion process and harm investigation of Pomacea canaliculata in China. Chinese Agricultural Science Bulletin, 26, 245-250. (in Chinese with English abstract) |
[杨叶欣, 胡隐昌, 李小慧, 汪学杰, 牟希东, 宋红梅, 王培欣, 刘超, 罗建仁 (2010) 福寿螺在中国的入侵历史、扩散规律和危害的调查分析. 中国农学通报, 26, 245-250.] | |
[40] |
Yin YX, He Q, Pan XW, Liu QY, Wu YJ, Li XR (2022) Predicting current potential distribution and the range dynamics of Pomacea canaliculata in China under global climate change. Biology, 11, 110.
DOI URL |
[41] |
Yoshida K, Matsukura K, Cazzaniga NJ, Wada T (2014) Tolerance to low temperature and desiccation in two invasive apple snails, Pomacea canaliculata and P. maculata (Caenogastropoda: Ampullariidae), collected in their original distribution area (northern and central Argentina). Journal of Molluscan Studies, 80, 62-66.
DOI URL |
[1] | Lixia Han, Yongjian Wang, Xuan Liu. Comparisons between non-native species invasion and native species range expansion [J]. Biodiv Sci, 2024, 32(1): 23396-. |
[2] | Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China [J]. Biodiv Sci, 2022, 30(8): 21443-. |
[3] | Renwu Wu, Xinge Nan, Hai Yan, Fan Yang, Yan Shi, Zhiyi Bao. Review of the legacy of Frank Nicholas Meyer by teasing apart his itineraries and introduced plants in Asia and Europe [J]. Biodiv Sci, 2022, 30(11): 22063-. |
[4] | Yanjie Liu, Wei Huang, Qiang Yang, Yu-Long Zheng, Shao-Peng Li, Hao Wu, Ruiting Ju, Yan Sun, Jianqing Ding. Research advances of plant invasion ecology over the past 10 years [J]. Biodiv Sci, 2022, 30(10): 22438-. |
[5] | Jing Yan, Xiaoling Yan, Huiru Li, Cheng Du, Jinshuang Ma. Composition, time of introduction and spatial-temporal distribution of naturalized plants in East China [J]. Biodiv Sci, 2021, 29(4): 428-438. |
[6] | He Weiming. Biological invasions: Are their impacts precisely knowable or not? [J]. Biodiv Sci, 2020, 28(2): 253-255. |
[7] | Zhang Jiazhen, Gao Chunlei, Li Yan, Sun Ping, Wang Zongling. Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port [J]. Biodiv Sci, 2020, 28(2): 144-154. |
[8] | Wandong Yin, Mingke Wu, Baoliang Tian, Hongwei Yu, Qiyun Wang, Jianqing Ding. Effects of bio-invasion on the Yellow River basin ecosystem and its countermeasures [J]. Biodiv Sci, 2020, 28(12): 1533-1545. |
[9] | Weng Zhuoxian, Huang Jiaqiong, Zhang Shihao, Yu Kaichun, Zhong Fusheng, Huang Xunhe, Zhang Bin. Genetic diversity and population structure of black-bone chickens in China revealed by mitochondrial COI gene sequences [J]. Biodiv Sci, 2019, 27(6): 667-676. |
[10] | Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504. |
[11] | Yu Wensheng,Guo Yaolin,Jiang Jiajia,Sun Keke,Ju Ruiting. Comparison of the life history of a native insect Laelia coenosa with a native plant Phragmites australis and an invasive plant Spartina alterniflora [J]. Biodiv Sci, 2019, 27(4): 433-438. |
[12] | Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. On reproductive strategies of invasive plants and their impacts on native plants [J]. Biodiv Sci, 2018, 26(5): 457-467. |
[13] | Hongwen Huang. “Science, art and responsibility”: The scientific and social function changes of a 500-year history of botanical gardens. II. Intension of sciences [J]. Biodiv Sci, 2018, 26(3): 304-314. |
[14] | Yuguo Wang. Natural hybridization and speciation [J]. Biodiv Sci, 2017, 25(6): 565-576. |
[15] | Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer. Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia [J]. Biodiv Sci, 2017, 25(12): 1285-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn